Безригельные каркасы в гражданском строительстве. Конструктивные системы многоэтажных зданий Каркасная конструктивная система ригельный и безригельный каркас

Безригельные каркасы в гражданском строительстве. Конструктивные системы многоэтажных зданий Каркасная конструктивная система ригельный и безригельный каркас

Выбор той или иной конструктивной схемы здания зависит от его этажности, объемно-планировочной структуры, наличия стройматериалов и базы стройндустрии.

Конструктивная схема представляет собой вариант конструктивной системы по признакам состава и размещения в пространстве основных несущих конструкций – продольному, поперечному или др.

В каркасных зданиях применяют три конструктивные схемы (рис.3.4):

С продольным расположением ригелей;

С поперечным расположением ригелей;

Безригельная.

Каркас с продольным расположением ригеля применяют в жилых домах квартирного типа и массовых общественных зданиях сложной планировочной структуры, например, в зданиях школ.

Каркас с поперечным расположением ригеля применяют в многоэтажных зданиях с регулярной планировочной структурой

Рис. 3.4. Конструктивные схемы каркасных зданий:

а – с продольным расположением ригеля; б – с поперечным; в –

безригельная.

(общежития, гостиницы), совмещая шаг поперечных перегородок с шагом несущих конструкций.

Безригельный (безбалочный) каркас, в основном используют в многоэтажных промышленных зданиях, реже в общественных и жилых, в связи с отсутствием соответствующей производственной базы в сборном жилищном строительстве и относительно малой экономичностью такой схемы.

Преимущество безригельного каркаса используется в жилых и общественных зданиях при их возведении в сборно-монолитных конструкциях методом подъема перекрытий или этажей. При этом имеется возможность произвольной установки колонн в плане здания: их размещение определяется только статическими и архитектурными требованиями и может не подчиняться закономерностям модульной координации шагов и пролетов.

Варианты каркасной конструктивной схемы представлены на рис.3.5.

Рис.3.5.Варианты каркасной конструктивной схемы:

А – с полным; Б – с неполным; В – с безригельным каркасом; 1 – полный каркас с продольным расположением ригелей; 2 – то же, с поперечным; 3 – полный каркас с продольным расположением ригелей колонн (только у наружных стен) и большепролетными перекрытиями; 4 – неполный продольный каркас; 5 – то же, поперечный; 6 – безригельный каркас; К – колонна; Р – ригель; Дж – вертикальная диафрагма жесткости; НП – настил перекрытия, НР – настил-распорка; I – несущие стены; II – ненесущие стены.

При проектировании зданий наиболее распространенной бескаркасной системы используют следующие пять конструктивных схем (рис.3.6):

схема I – с перекрестным расположением внутренних несущих стен при малом шаге поперечных стен (3; 3,6 и 4,2 м). Применяют в проектировании многоэтажных зданий, в зданиях, строящихся в сложных грунтовых и в сейсмических условиях. Конструкции сборных перекрытий, применяемые в массовом строительстве, в зависимости от величины перекрываемого пролета условно делят на перекрытия малого (2,4-4,5 м) и большого (6-7,2 м). ;

Рис.3.6. Конструктивные схемы бескаркасных зданий:

I – перекрестно-стеновая; II и III – поперечно-стеновые; IV и V – продольно-стеновые; А – варианты с ненесущими или самонесущими продольными наружными стенами; Б – то же, с несущими; а – план стен; б – план перекрытий.

схема II – с чередующимися размерами (большим и малым) шага поперечных несущих стен и отдельными продольными стенами жесткости (схема со смешанным шагом стен). Схемы I-II позволяют более разнообразно решать планировку жилых зданий, размещать встроенные нежилые помещения в первых этажах, обеспечивают удовлетворительные планировочные решения детских учреждений и школ;

схема III – с редко расположенными поперечными несущими стенами и отдельными продольными стенами жесткости (с большим шагом стен). Имеет преимущества при применении полносборных конструкций;

схема IV – с продольными наружными и внутренними несущими стенами и редко расположенными поперечными стенами – диафрагмами жесткости (через 25-40). Применяют при проектировании жилых и общественных зданий малой, средней и повышенной этажности с каменными и крупноблочными конструкциями. В панельном строительстве применяют редко;

схема V - с продольными наружными несущими стенами и редко расположенными поперечными диафрагмами жесткости. Применяют в экспериментальном проектировании и строительстве жилых домов высотой 9-10 этажей. Обеспечивает свободу планировки квартир.

Приемы конструктивных решений зданий

Проектирование конструкций здания любого назначения начинают с решения основной принципиальной задачи – выбора конструктивной системы здания исходя из функциональных и технико-экономических требований.

Конструктивная система – это взаимосвязанная совокупность вертикальных и горизонтальных несущих конструкций здания, которые, воспринимая все приходящиеся на него нагрузки и воздействия, совместно обеспечивают прочность, пространственную жесткость и устойчивость сооружения.

Выбор конструктивной системы определяет роль каждого несущего конструктивного элемента в пространственной работе здания.

Горизонтальные несущие конструкции (покрытия и перекрытия) воспринимают все приходящиеся на них вертикальные нагрузки и передают их вертикальным несущим конструкциям (стенам, колоннам и др.), которые, в свою очередь, передают нагрузки через фундамент на грунт (основание здания). Горизонтальные несущие конструкции, как правило, играют в здании роль жестких дисков – горизонтальных диафрагм жесткости. Они воспринимают и перераспределяют горизонтальные нагрузки и воздействия (ветровые, сейсмические) между вертикальными несущими конструкциями.

Горизонтальные несущие конструкции гражданских зданий высотой более двух этажей, как правило, однотипны и представляют собой железобетонный диск – сборный (из отдельных железобетонных сплошных, многопустотных или ребристых плит), сборно-монолитный или монолитный. Также в многоэтажных промышленных зданиях (реже – в гражданских зданиях) используют перекрытия по металлическим балкам (балочные) и профилированному стальному настилу. Исходя из противопожарных требований в ряде случаев такие перекрытия впоследствии замоноличивают бетоном.

Вертикальные несущие конструкции по сравнению с горизонтальными более разнообразны. Различают следующие виды вертикальных несущих конструкций:

Стержневые (стойки каркаса);

Плоскостные (стены, диафрагмы);

Объемно-пространственные элементы высотой в этаж (объемные блоки);

Внутренние объемно-пространственные полые стержни (открытого или закрытого сечения) на высоту здания (стволы жесткости);

Объемно-пространственные внешние несущие конструкции на высоту здания в виде тонкостенной оболочки замкнутого сечения (оболочки).

Соответственно виду вертикальной несущей конструкции получили наименование пять основных конструктивных систем зданий:

- каркасная ;

- бескаркасная (стеновая);

- объемно-блочная;

- ствольная;

- оболочковая.

Наряду с основными широко применяют комбинированные конструктивные системы . В этих системах вертикальные несущие конструкции компонуют, сочетая различные виды несущих элементов – стены и колонны, стены и объемные блоки и др.

В соответствии с функциональными требованиями к объемно-планировочному решению в зданиях могут сочетаться различные структуры пространственных ячеек. Это влечет за собой и сочетание различных конструктивных систем в одном здании , например, бескаркасной для фрагмента здания ячеистой структуры и каркасной – для зальных помещений. Такое решение называется смешанной конструктивной системой здания .

Выбор конструктивной системы при проектировании основан на объемно-планировочных, архитектурно-композиционных и экономических требованиях, в соответствии с которыми определились области рационального применения каждой из конструктивных систем.

Бескаркасная (стеновая) система (рис. 3.1) – основа проектирования жилых домов различной этажности и назначения (квартирные дома, общежития, гостиницы, пансионаты и др.) и для разных инженерно-геологических условий. Выбор этой системы связан с относительной стабильностью объемно-планировочных решений жилых зданий и с ее технико-экономическими преимуществами. Благодаря этому расширяется применение бескаркасной системы и для массовых типов общественных зданий (школ, детских дошкольных учреждений, поликлиник и др.).

Рис. 3.1. Бескаркасная (стеновая) конструктивная система

1 – наружная несущая стена;

2 – внутренняя несущая стена;

3 – сборный настил перекрытия

Каркасная система (см. рис. 3.2) наиболее часто применяется при проектировании массовых и уникальных общественных зданий различного назначения и этажности. Эта система уступает бескаркасной системе по показателям затрат труда и срокам возведения. Однако предпочтение, оказываемое каркасным системам, связано с функциональными требованиями к гибкости объемно-планировочных решений общественных зданий и необходимости их неоднократной перепланировки в процессе эксплуатации. С точки зрения этих требований компоновочные преимущества каркасных систем перед бескаркасными очевидны.

Рис. 3.2. Каркасная конструктивная система

1 – колонны каркаса; 2 – ригели каркаса; 3 4 – наружная навесная стеновая панель

Общий вид каркасных конструктивных систем общественного и промышленного зданий показаны на рис. 3.3.

Рис. 3.3. Общий вид зданий с каркасной конструктивной системой

а – общественного;б – промышленного

Объемно-блочная система (см. рис. 3.4) применяется при проектировании жилых зданий различных типов высотой до 16 этажей. Главное преимущество такой конструктивной системы – сокращение затрат труда при постройке зданий.


Рис. 3.4. Объемно-блочная конструктивная система

1 – монолитный железобетонный объемный блок (размером на комнату)

Ствольная система (см. рис. 3.5) обеспечивает свободу планировочных решений, поскольку пространство между стволом жесткости и наружными ограждающими конструкциями остается свободным от промежуточных опор. Относительно высокая жесткость здания позволяет использовать такую систему при проектировании жилых и общественных зданий, как правило, башенного типа с компактной (квадратной, круглой и т.п.) формой плана, высотой более 20 этажей. Возможно применение ствольной системы и для протяженных зданий, но в этих случаях конструктивная система таких зданий компонуется из нескольких стволов.

Наиболее целесообразны компактные в плане многоэтажные здания ствольной системы в сейсмостойком строительстве, а также в условиях неравномерных деформаций основания (на просадочных грунтах, над горными выработками и т.п.).


Рис. 3.5. Ствольная конструктивная система

1 – сборный или монолитный ствол жесткости; 2 – консольные междуэтажные перекрытия

Оболочковая система присуща уникальным и высотным (более 40 этажей) зданиям, поскольку обеспечивает существенной увеличение жесткости сооружения. Применение такой системы в качестве основной (а также в комбинации с каркасом) обеспечивает свободу планировочных решений, что позволяет применять ее для жилых и общественных зданий. Однако чаще всего такие здания проектируют многофункциональными. Оболочковая конструкция может совмещать несущие и ограждающие функции или дополняться наружными ограждающими конструкциями.

Рис. 3.6. Пример здания с оболочковой конструктивной системой

Помимо основных типообразующих признаков конструктивной системы, т.е. несущих вертикальных элементов, существуют дополнительные классификационные признаки внутри каждой из систем. Ими служат геометрические признаки – ­­­­­­­­­­­размещение вертикальных несущих конструкций в плане здания и расстояния между ними. Способ размещения несущих горизонтальных и вертикальных конструкций здания в пространстве называют конструктивной схемой.

При бескаркасной (стеновой) конструктивной системе , исходя из основных геометрических признаков, можно выделить следующие виды конструктивных схем (см. рис. 3.7):

- I продольно-стеновая ;

- II поперечно-стеновая :

а) с большим шагом несущих стен (2,4 ÷ 4,5 м);

б) с узким шагом несущих стен (6,0 ÷ 7,2 м);

в) со смешанным шагом ;

- III перекрестно-стеновая.

Рис. 3.7. Конструктивные схемы бескаркасных зданий

а – продольно-стеновая;

б – поперечно-стеновая;

в – перекрестно-стеновая

Продольно-стеновая конструктивная схема (см. рис. 3.7 а ) традиционна в проектировании зданий малой, средней и повышенной этажности. Редкое расположение поперечных стен-диафрагм жесткости (через 25 – 40 м) обеспечивает свободу планировочных решений в зданиях, поэтому эту схему применяют при проектировании жилых и общественных зданий различного назначения.

Поперечно-стеновая конструктивная схема (см. рис. 3.7 б ) менее гибкая в планировочном отношении, чем продольно-стеновая схема. Поэтому наиболее часто ее применяют при строительстве жилых зданий, реже – массовых типов общественных зданий (детских учреждений, школ и т.п.). Поперечно-стеновая схема (особенно с большим шагом поперечных несущих стен) допускает возможность частичной перепланировки внутреннего объема зданий в процессе эксплуатации, а также размещения небольших встроенных нежилых помещений в первых этажах жилых домов.

в ) присущи малые размеры конструктивно-планировочных ячеек (около 20 м 2), что ограничивает область ее применения только жилыми зданиями. Частое расположение поперечных стен делает трансформацию планов зданий трудноосуществимой. Разнообразию планировочных решений в проектировании домов на основе этой схемы способствует использование нескольких размеров шагов поперечных стен (например, 3,0; 3,6 и 4,2 м) в различных сочетаниях. Благодаря высокой пространственной жесткости перекрестно-стеновая схема широко распространена в проектировании многоэтажных зданий, а также зданий, строящихся в сложных геологических условиях, а также в сейсмически опасных районах.

В каркасных зданиях применяют четыре конструктивные схемы:

- I с поперечным расположением ригелей ;

- II с продольным расположением ригелей ;

- III с перекрестным расположением ригелей ;

- IV безригельная .

Использование современных массовых типовых конструкций перекрытий определяет размеры основной конструктивно-планировочной сетки осей каркаса 6 ´ 6 м (при дополнительной сетке 6 ´ 3 м).

При выборе конструктивной схемы каркаса учитывают как экономические, так и архитектурно-планировочные требования:

Элементы каркаса (колонны, ригели, диафрагмы жесткости) не должны ограничивать свободу выбора планировочного решения;

Ригели каркаса не должны выступать из поверхности потолка в жилых комнатах, а проходить по их границам.

Каркас с поперечным расположением ригелей (см. рис. 3.8) целесообразен в зданиях с регулярной планировочной структурой (общежития, гостиницы), где шаг поперечных перегородок совмещается с шагом несущих конструкций.


Рис. 3.8. Конструктивная схема каркасного здания с поперечным расположением ригелей

Каркас с продольным расположением ригелей (см. рис. 3.9) используют в проектировании жилых домов квартирного типа и массовых общественных зданий сложной планировочной структуры, например, в зданиях школ.

Рис. 3.9. Конструктивная схема каркасного здания с продольным расположением ригелей

Каркас с перекрестным расположением ригелей выполняют чаще всего монолитным и используют в многоэтажных промышленных и общественных зданиях.

Безригельный каркас используют как в многоэтажных промышленных, так и в гражданских зданиях, т.к. в связи с отсутствием ригелей эта схема в архитектурно-планировочном отношении наиболее целесообразна.

Рис. 3.10. Конструктивная схема здания с безригельным каркасом

1 – колонны каркаса; 2 – сборный или монолитный настил перекрытия

В данном случае ригели отсутствуют, а сборный или монолитный диск перекрытия опирается или на капители (уширения) колонн, или непосредственно на колонны (см. рис. 3.10).

В комбинированных конструктивных системах может применяться различное сочетание вертикальных несущих конструкций, которые используются в основных конструктивных системах. На практике наиболее распространены следующие виды конструктивных схем в зданиях с комбинированными системами:

1) Неполный каркас (см. рис. 3.11). Такую схему выбирают исходя из местных сырьевых и производственных условий применения массивных конструкций наружных стен.

Рис. 3.11. Конструктивная схема здания с неполным каркасом (план)

а – плиты перекрытия опираются на ригели каркаса и на наружную несущую стену;

б – ригели каркаса опираются на колонны и на наружную несущую стену

1 – колонны каркаса; 2 – ригели; 3 – сборный настил перекрытия; 4 – несущая стена

2) Схема, в которой каркас расположен в пределах первого этажа (или нескольких этажей), а выше здание имеет стеновую конструктивную систему (см. рис. 3.12).

Рис. 3.12. Пример комбинированной конструктивной системы (разрез)

1 – колонны каркаса; 2 – продольно расположенные ригели; 3 – сборный настил перекрытия; 4 – несущие стены

Конструктивная система безригельного сборного железобетонного каркаса КУБ-2,5 позволяет в разнообразных климатических условиях практически полностью обеспечить стоительство всего спектра городских сооружений: жилья, зданий административного, социально-культурного и бытового назначения, многоярусных гаражей, складов, некоторых производственных сооружений (с пролетами до 12 м).

Все железобетонные конструкции системы дают возможность проектировать (строить) здания вплоть до I степени огнестойкости, что обеспечивает использование ее для зданий различной высотности: коттеджи, малоэтажные и многоэтажные (до 75 метров) дома.

Минимальное количество вертикальных элементов каркаса и отсутствие ригелей позволяет создавать в границах несущих и ограждающих конструкций свободные планировки помещений различного назначения. Перегородки могут быть расположены в любом месте архитектурного плана как во время проектирования и строительства, так и во время эксплуатации здания. Система обеспечивает возможность перепланировок помещений в соответствии с любыми текущими потребностями в процессе эксплуатации здания без нарушения конструктивной устойчивости здания (дает свободу в организации на первых этажах в жилых домах офисов, магазинов, спортивно-оздоровительных и бытовых комплексов).

Несущий каркас здания состоит только из внутренних элементов (колонн, перекрытий и при необходимости связей или дифрагм). В качестве наружных ограждающих конструкций (стен) могут использоваться практически любые фасадные решения: облегченные теплоэффективные каменные (в т.ч. облицованные кирпичем), различные навесные панели, вентилируемые фасады, витражные ограждения и т. д.

Система «КУБ» позволяет консольно выносить плиты перекрытия за оси крайних колонн (до 1,5 м) и придавать плитам по их наружному обрезу практически любую форму в плане. В систему заложены безграничные возможности по обогащению пластики фасадов, которые могут удовлетворить любые, самые изысканые вкусы, и ограничиваются только фантазией архитектора, запросами заказчика и требованиями норм.

Конструктивные особенности системы

На сегодняшний день на российском рынке конструктивная система безригельного каркаса "КУБ-2,5" является единственной, в которой безригельный каркас – полносборный.

Каркас здания (сооружения) в системе конструктивного безригельного каркаса представляет собой пространственную конструкцию, типа «этажерки» сборного, сборно-монолитного или монолитного исполнения. В качестве стоек каркаса служат колонны, роль ригелей выполняют плиты перекрытия, для элементов жесткости используютя связи либо диафрагмы. Лестницы, вентблоки, лифтовые шахты при этом могут быть применены любые, освоенные заводами-производителями. Несущая способность перекрытий позволяет использование каркаса в зданиях с интенсивностью нагрузок на этаж не более 1300 кг/м 2 (модификация КУБ-2,5К до 2500 кг/м 2).

В основе конструктивной системы «КУБ-2,5» заключен оригинальный узел сопряжения двух основных элементов – панели и колонны с использованием закладной детали – стальной обечайки специальной конструкции соединенной с арматурными каркасами, располагающимися в теле панели. Бетон в данном узле работает в условиях всестороннего сжатия, в следствие чего происходит его самоупрочнение. Это дало возможность избежать ванной сварки в стыке колонн, в узле присутствуют только монтажные швы.

Стыки элементов, из которых состоит безригельный каркас в целом, замоноличиваются, образуя рамную конструктивную систему, ригелями которой служат перекрытия.

Членение перекрытия запроектровано с таким расчетом, чтобы стыки панелей располагались в зонах, где величина изгибающих моментов равна нулю.

Важным преимуществом системы является возможность использования в колоннах бетонов повышенных классов (до В60), что сказывается на результатах армирования и сохранении типовых поперечных сечений колонн 400×400. Колонны, изготавливаемые на строительной площадке (в монолитном домостроении) могут иметь класс бетона до В30, а это накладывает на конструирование стоек соответствующие ограничения.

Наружные стены не являются несущими, под них не нужно устраивать фундаменты, их не требуется проектировать столь прочными, как это делается в зданиях бескаркасного типа. Нагрузка на основание каркаса на 25% ниже, чем в монолитном исполнении. Независимо от грунтовых условий объем фундаментов, необходимых для распределения усилий на основание от надземной части зданий, выполненных в конструкциях системы «КУБ-2,5» будет всегда минимальным, т.к. собственный вес каркаса также минимален за счет достигнутой оптимизации всех сечений.

Конструкции безригельного каркаса предназначены для применения в различных регионах России, в том числе в районах с сейсмичностью 7-9 баллов.

Прочность конструкций каркаса «КУБ-2,5» подтверждена техническими расчетами и многочисленными испытаниями:

  • Конструкции КУБ рассмотрены НТС Госкомархитектуры при Госстрое СССР и письмом № ИП-7-3691 от 19.09.1986 г. рекомендованы к применению;
  • ЦНИИСК им. Кучеренко Госстроя СССР, каркас КУБ рекомендован к применению (заключение от 15.03.1990 г.);
  • Лаборатория динамических испытаний ЦНИИЭП жилища под руководством Ашкинадзе Г.Н.

В последние годы в Росcии и за рубежом построены более тысячи объектов с использованием безригельного каркаса КУБ-2,5.

Особенности строительства в системе

Универсальная конструктивная система "КУБ-2,5" высоко индустриализирована, что выражается в высокой степени заводской готовности составляющих ее элементов. Все элементы производятся на заводах железобетонных изделий.

На строительной площадке выполняются только монтаж готовых элементов механизированными средствами, обеспечивая тем самым высокие темпы строительства.

Применяемая в системе заводская технология изготовления элементов зданий позволяет максимально перенести затраты труда строителей в цеховые условия, тем самым значительно уменьшая на строительной площадке риски как природных, так и человеческих факторов.

При разработке каркаса системы КУБ были применены решения, существенно сокращающие строительный процесс возведения каркаса здания:

  • монтаж вертикальных конструкций производится сразу на несколько этажей;
  • конструкция стыка колонн не требует проведения ванной сварки несущей арматуры;
  • отсутсвует необходимость в установке (и последующей многократной переустановке) опалубки;
  • конструкции стыков колонн и панелей перекрытий между собой не требуют установки специальной опалубки для замоноличивания стыка, чем снижена построечная трудоемкость;
  • изделия плит КУБ-2,5 складируются в штабеля до 10 штук, что позволяет успешно работать в условиях стесненной строительной площадки.

Кроме того монтаж каркаса может вестись в любую погоду, а небольшое количество рабочих на стройплощадке снижает вероятность использования неквалифицированной рабочей силы.

Экономическое обоснование

Железобетонные конструкции системы «КУБ-2,5» не только рациональны, но и оптимальны в силу заложенных в них решений. Рациональность выражается в разумно обоснованных, продуманных конструктивных решениях, предусматривющих минимальное количество строительных материалов (стали и бетона) и трудозатрат.

Экономия материалов:

  • расход железобетона в каркасе (панели перекрытия, колонны, швы замоноличивания) составляет: 0,179 м³ на 1 м² площади перекрытия;
  • расход стали в железбетонных элементах каркаса, в т.ч. арматурной и прокатной, составляет: 14,3 кг на 1 м² площади перекрытия.

Экономия трудозатрат:

  • трудозатраты построечные – 0,51 чел. час на 1 м² площади перекрытия;
  • трудозатраты заводские – 1,92 чел. час на 1 м² площади перекрытия.

Универсальная конструктивная система сборно-монолитного безригельного каркаса «КУБ-2,5» проектируется на основе разработанных и проверенных методик, что значительно сокращает сроки выполнения работ.

Изготовление и возведение каркаса ведется на основе проверенной временем эффективной организации строительного производства.

Механовооруженность труда на всех уровнях изготовления сборных железобетонных изделий и монтажа каркаса достигает 90%.

Всепогодность, универсальность и поточность возведения каркаса, а также предварительные проектные проработки позволяют достаточно точно планировать сроки строительства.

Сборный железобетон не требует электропрогрева, что экономит затраты на электроэнергию.

Скорость возведения снижает время эксплуатации башенных кранов, а следовательно и арендную плату за их эксплуатацию.

Использование сборного железобетонного каркаса системы «КУБ-2,5» реально сокращает сроки строительства и удешевляет его.

Здание проектируется каркасной системы с «навесными» наружными стенами. Рама воспринимает вертикальные нагрузки, а также горизонтальные нагрузки, которые передаются через диск перекрытия. Рамой является система стоек - колонн, соединенных жестко с монолитными безригельными плитами перекрытия.

В продольном и поперечном направлении каркас здания работает по рамной системе.

Рис. 1.

Наружные стены выполнены из шлакоблоков.

Междуэтажные перекрытия приняты монолитными железобетонными, марка бетона B30.

Фундаменты под колонны - монолитные железобетонные столбчатого типа, площадь подошвы определяется по предварительному расчету.

Согласно инженерно-геологических изысканий основанием под фундаменты являются следующие грунты:

Щебенистый крупнообломочный грунт: плотность с=2,10 г/см3, угол внутреннего трения ц=34°, удельное сцепление c=1 кПа, расчетное сопротивление R0=400 кПа; модуль деформации E=34 МПа.

В данном разделе выполнен расчет элементов надземной части монолитного каркаса гаражного комплекса по ул. Кирова в г. Владивостоке:

· безригельной монолитной плиты перекрытия (вариант 1);

· монолитного ребристого перекрытия (вариант 2);

· средней колонны и фундамента под колонну;

Расчет конструкций каркаса

Проектирование монолитной безригельной плиты перекрытия (вариант 1)

Обоснование расчетной схемы, метода расчете, геометрических параметров

Расчет ведем на примере фрагмента перекрытия в осях 2-3 и А-Б.

Для расчета безригельного перекрытия его делят на полосы шириной, равной половине пролета в каждом направлении (рис. 2) .

На основе экспериментальных исследований и данных эксплуатации расчет упрощен применением эмпирических коэффициентов. При этом расчете надколонные и пролетные полосы перекрытия рассматривают как неразрезные изгибаемые плиты. Надколонные полосы считают лежащими на неподатливых опорах, которыми служат колонны, а пролетные полосы считают лежащими на упругих податливых опорах, которыми являются надколонные полосы, направленные перпендикулярно рассчитываемым пролетным (рис. 3).


Рис. 2.

Рис. 3. Обозначение расчетных изгибающих моментов в плите

Характеристики прочности бетона и арматуры.


Бетон тяжелый класса В30; расчетные сопротивления при сжатии Rb=17 МПа, при растяжении Rbt=1,2 МПа; коэффициент условий работы бетона b2=0,9; модуль упругости Eb=32500МПа. Арматура рабочая класса А-III, расчетное сопротивление Rs=365МПа, модуль упругости Es=200000МПа; коэффициент условий работы стали b2=0,9.

Сбор нагрузок

Таблица 7

Сбор нагрузки на 1 м2 перекрытия надземной части здания.

Расчет на продавливание

Чтобы проверить достаточность принятой толщины плиты, выполним расчет на продавливание.

Условие прочности на продавливание,

где - продавливающая сила;

Расчетное сопротивление бетона на растяжение;

Полезная высота сечения;

Среднее арифметическое между периметрами верхнего и нижнего оснований пирамиды продавливания.


Рис. 4.

Условие выполнено.

Прочность на продавливание обеспечена.

Определение усилий

Для расчета безригельного перекрытия разделим его на полосы шириной, равной половине пролета в каждом направлении.

В каждом направлении определяем соответствующие изгибающие моменты, вычисляемые как для свободно опертой панели, покоящейся на широких опорах.

Панельный изгибающий момент МП1=МП2, так как l1=l2=7000 мм:


Рис. 5.

Найденные изгибающие моменты распределяют на надколонную и пролетную полосы, рассматривая их как самостоятельные неразрезные плиты. На надколонную, более жесткую полосу, передается 70%, а на пролетную - 30% изгибающего момента. Эти доли распределяют между опорными и пролетными сечениями соответствующих полос следующим образом:

для надколонной полосы в направлении l1:

· на опорах

· в пролете

для пролетной полосы в направлении l1:

· на опорах

· в пролете

Моменты в направлении l2 будут равны моментам в направлении l1, так как l1= l2=7000 мм.

Расчет сечений и их конструирование

Расчет плиты перекрытия в направлении l1=7000 мм.

а) надколонная полоса:

· В пролете:

h0 = h - a = 200 - 20 = 180 мм

Вычисляем m:

am=M2/(Rbbh02гb2)=9724/(170,13501820,9)=0,058;

где гb2 - коэффициент условия работы бетона.

По табл.3.1 находим

Aтрs=M2/(Rsh0гс)=9724/(3650,10,970180,9)=16,95 см2 ;

где гс - коэффициент условия работы стали.

Принимаем в пролете надколонной полосы 1712 А-III (s=200 мм) As=19,23 см2.

· На опоре:

Расчетное сечение: высота h = 200 мм, ширина b = 3500 мм, толщина защитного слоя бетона а=20 мм.

h0 = h - a = 200 - 20= 180 мм

Вычисляем m:

am=M1/(Rbbh02 гb2)=24310/(170,13501820,9)=0,139

По табл.3.1 находим

Определяем требуемую площадь арматуры:

Aтрs=M1/(Rsh0 гс)=24310/(3650,10,925180,9)=44,45 см2

Принимаем на опоре надколонной полосы 1816 А-III (s=200 мм) As=45,19 см2.

б) пролетная полоса:

· В пролете:

Расчетное сечение: высота h = 200 мм, ширина b = 3500 мм, толщина защитного слоя бетона а=20 мм.

h0 = h - a = 200 - 20= 180 мм

Вычисляем m:

am=M3/(Rbbh02 гb2)=7293/(170,13501820,9)=0,042

Определяем требуемую площадь арматуры:

Aтрs=M3/(Rsh0 гс)=7293/(3650,10,979180,9)=12,6 см2

· На опоре:

Расчетное сечение: высота h = 200 мм, ширина b = 3500 мм, толщина защитного слоя бетона а=20 мм.

h0 = h - a = 200 - 20= 180 мм

Вычисляем m:

am=M4/(Rbbh02 гb2)= 7293/(170,13501820,9)=0,042

По табл.3.1 интерполяцией находим

Определяем требуемую площадь арматуры:

Aтрs=M4/(Rsh0 гс)=7293/(3650,10,979180,9)=12,6 см2

Принимаем в пролете пролетной полосы 1710 А-III (s=200 мм) As=13,35 см2.

Расчет на образование трещин, нормальных к продольной оси

Расчет железобетонных элементов по образованию нормальных трещин производится из условия (233) :

Мr < Мcrc , где

Мr момент внешних сил, расположенных по одну сторону от рассматриваемого сечения, относительно оси, параллельной нулевой линии и проходящей через ядровую точку, наиболее удаленную от растянутой зоны, трещинообразование которой проверяется;

Мcrc -- момент, воспринимаемый сечением, нормальным к продольной оси элемента при образовании трещин, и определяемый по формуле:

Mcrc = Rbt,serWpl , здесь

Rbt,ser - расчетное сопротивление бетона осевому растяжению для предельных состояний второй группы, численно равное 1,4 МПа;

Wpl момент сопротивления приведенного сечения для крайнего растянутого волокна с учетом неупругих деформаций растянутого бетона, определяемый согласно по формуле (247) :

Wpl = Wred, здесь

Коэффициент, зависящий от формы поперечного сечения и определяемый по таблице 29 , численно равный 1,75;

Wred - момент сопротивления приведенного сечения.

Вычислим статический момент сопротивления приведенного сечения:

а - величина защитного слоя, равная 20 мм;

Вычислим площадь приведенного сечения:

Найдем расстояние от нижней грани до центра тяжести приведенного сечения:

Вычислим момент инерции приведенного сечения:


Находим момент сопротивления приведенного сечения:

Находим момент сопротивления приведенного сечения для крайнего растянутого волокна с учетом неупругих деформаций растянутого бетона:

Wpl = 1,75·24394,79=42690,88 см3

Находим момент трещинообразования:

Мcrc=1,8·10-1·42690,88=7684,35 кН·см

Момент внешних сил для изгибаемых элементов:

Мr = М=4932 кН·см

Мr =9724 кН·см > Мcrc=7684,35 кН·см - условие не выполняется.

Образуются трещины в сечениях, нормальных к продольной оси элемента. Необходимо выполнить расчет на раскрытие трещин.

Расчет на раскрытие трещин, нормальных к продольной оси

Ширину раскрытия трещин, нормальных к продольной оси элемента, acrc, мм, следует определяют по формуле (249) :

коэффициент, принимаемый равным для изгибаемых элементов 1;

l -- коэффициент, принимаемый равным 1,0 при кратковременных нагрузок и непродолжительного действия постоянных и длительных нагрузок; равным 1,5 при продолжительном действии постоянных и длительных нагрузок;

Коэффициент, принимаемый равным 1,0 для арматуры класса А-III;

s напряжение в стержнях крайнего ряда арматуры S;

коэффициент армирования сечения, принимаемый равным отношению площади сечения арматуры S к площади сечения бетона (при рабочей высоте ho), но не более 0,02:

Предельная ширина раскрытия трещины по табл. 1 : непродолжительная, продолжительная.

Изгибающие моменты от нормативных нагрузок:

· постоянной и длительной;

Приращение напряжений в растянутой арматуре от действия постоянной и длительной нагрузки определим по формуле (7.106) :

Ws - момент сопротивления растянутой арматуры, который определим по формуле (6.16) :

d - диаметр растянутой арматуры.

Вычислим приращение напряжений в растянутой арматуре от действия полной нагрузки:

Вычислим ширину раскрытия от непродолжительного действия полной нагрузки:

Вычислим ширину раскрытия от непродолжительного действия постоянной и длительной нагрузок:

Вычислим ширину раскрытия от действия постоянной и длительной нагрузок:

Найдем непродолжительную ширину раскрытия трещин:

Найдем продолжительную ширину раскрытия трещин:

Расчет на закрытие трещин, нормальных к продольной оси

Для надежного закрытия трещин, нормальных к продольной оси элемента, должны быть соблюдены следующие требования п. 7.6.5. :

Предварительное напряжение в арматуре с учетом всех потерь, равное 0;

Приращение растягивающего напряжения в арматуре от действия внешних нагрузок;

Расчетное сопротивление арматуры растяжению для предельных состояний второй группы, для арматуры A-III равное 390 МПа табл.19* .

Требование выполнено, трещины закроются.

Расчет на прогиб

По табл.2 предельно допустимый прогиб [f] при 6 м? l ?7,5 м (l=7,0 м) равен 3 см.

Для изгибаемых элементов с защемленными опорами прогиб в середине пролета определяется по формуле (313) :

Кривизны элемента соответственно в середине пролета, на левой и правой опорах;

рm коэффициент, определяемый по табл. 35 как для свободно опертой балки, числено равный 5/48

Так как, то

Поскольку в растянутой зоне образуются нормальные к продольной оси трещины, кривизна определяется по формуле (271) :

Мs -- момент относительно оси, нормальной к плоскости действия момента и проходящей через центр тяжести площади сечения арматуры S, от всех внешних сил, расположенных по одну сторону от рассматриваемого сечения, равный для изгибаемых элементов:

Мs = М=97,24 кН·м;

z плечо внутренней пары сил. Значение z вычисляется по формуле:

s -- коэффициент, учитывающий работу растянутого бетона на участке с трещинами, определяется по формуле (280) :

ls коэффициент, учитывающий влияние длительности действия нагрузки и принимаемый по табл. 32 ;

Коэффициент, определяемый по формуле (281) :

b -- коэффициент, учитывающий неравномерность распределения деформаций крайнего сжатого волокна бетона по длине участка с трещинами и принимаемый равным 0,9 для тяжелого бетона;

f коэффициент, определяемый по формуле (277) :

Коэффициент. Значение вычисляется по формуле (274) :

Коэффициент, принимаемый равным 1,8 для тяжелого бетона;

Определяется по формуле (275) :

Определяется по формуле (276) :

v коэффициент, характеризующий упруго-пластическое состояние бетона сжатой зоны и принимаемый равным 0,15 по табл. 31 .

Вычислим:

Вычислим:

Вычислим:

Вычислим:

Вычислим:

Вычислим:

Вычислим:

Вычислим:


Находим прогиб:

f=1,41 < [f]=3 см, прогиб не превышает предельно допустимый.

Одной из модификаций безригельного каркаса является сборно-монолитный рамный или рамно-связевый каркас с плоскими плитами перекрытий, включающий многоэтажные максимальной длиной 13 м колонны квадратного сечения 40x40 см, надколонные, межколонные панели перекрытия и панели-вставки единого размера в плане 2,8x2,8 м и единой толщины 160 и 200 мм, а также диафрагмы жесткости.

Каркас рассчитан на сооружение относительно простых в композиционном отношении зданий высотой до 9 этажей при рамной схеме и 16...20 этажей при рамно-связевой схеме с ячейками в плане 6x6; 6x3 м, а при введении металлических шпренгелей на ячейки 6x9; 6x12 м при высоте 3,0; 3,6 и 4,2 м при полной вертикальной нагрузке до 200 кПа и горизонтальной нагрузке от сейсмических воздействий до 9 баллов.

Фундаменты монолитные и сборные стаканного типа. Наружные ограждающие конструкции самонесущие и навесные из различных материалов или типовых индустриальных изделий других конструктивных систем. Лестницы преимущественно из наборных ступеней по стальным косоурам. Стыки элементов каркаса замоноличиваются, образуя рамную систему, ригелями которой служат перекрытия.

Монтаж конструкций ведется в следующем порядке: монтируют и замоноличивают в стаканах колонны; монтируют надколонные панели с высокой точностью, от которой зависит качество монтажа всего перекрытия; на надколонные панели устанавливают межколонные панели. Затем монтируют панели-вставки. После выверки, рихтовки и фиксации перекрытия устанавливают арматуру в швах замоноличивания и производят замоноличивание швов между панелями и стыками панелей с колоннами по всему перекрытию.

Каркас рассчитывают на действие вертикальной и горизонтальной нагрузок методом заменяющих рам в двух направлениях. При этом в качестве ригеля рамы принимают плиту шириной, равной шагу колонн перпендикулярного направления.

При расчете системы на действие горизонтальных сил в обоих направлениях принимают полную расчетную нагрузку, изгибающие моменты от которой вводят полной величиной в расчетные сочетания. При расчете системы на действие вертикальных сил учитывают работу каркаса в двух стадиях: монтажной и эксплуатационной. В стадии монтажа принимают шарнирное опирание панелей перекрытия в местах специальных монтажных устройств, кроме надколонных панелей, которые жестко соединены с колонной. В эксплуатационной стадии производят расчет рам на полную вертикальную нагрузку в двух направлениях. Расчетные изгибающие моменты распределяют в определенном соотношении между пролетами и надколонными полосами.

Силовые воздействия на колонны в уровне низа панели перекрытия определяют по формулам, учитывающим двухстадийную работу конструкции. Элементы конструктивной системы готовят из бетона класса В25 и армируют арматурой из стали классов А-I; A-II и A-III.

Характерной особенностью системы является узел сопряжения надколонной панели с колонной. Для эффективной передачи нагрузки с панелей на колонну в колонне организуется подрезка по периметру в уровне перекрытия с оголенными четырьмя угловыми стержнями. Воротник надколонной панели в виде уголковой стали с помощью монтажных деталей и сварки соединяется со стержнями.

Узел соединения панелей перекрытия типа стыка Передерия, в котором в скобообразные выпуски арматуры пропускается и замоноличивается продольная арматура 0 12-А-П. Для эффективной передачи вертикальной нагрузки в панелях предусматриваются продольные треугольные пазы, образующие с бетоном замоноличивания шва (шириной 200 мм) своего рода шпонку, хорошо работающую на срез.

Указанная конструктивная система рассчитана на применение в районах со слаборазвитой индустрией сборного железобетона для зданий различного назначения при относительно низких требованиях к показателю индустриальности (степени заводской готовности) системы. Принципиальные решения сборно-монолитного безригельного каркаса.

Технико-экономические показатели системы характеризуются несколько более низким расходом металла, чем каркасно-панельные системы для тех же параметров ячеек, но более высоким расходом бетона и значительной построечной трудоемкостью.


Самое обсуждаемое
Обломов характеристика образа штольца андрея ивановича Первое появление штольца в романе обломов Обломов характеристика образа штольца андрея ивановича Первое появление штольца в романе обломов
Арес в искусстве и культуре Арес в искусстве и культуре
Ресничные черви представители Ресничные черви представители


top