Проведение технологических испытаний. Механические свойства металла и технологические испытания труб Отбор проб и подготовка образцов для испытания на осадку

Проведение технологических испытаний. Механические свойства металла и технологические испытания труб Отбор проб и подготовка образцов для испытания на осадку

Механические свойства выявляются при воздействии на металл растягивающих, изгибающих или других сил. Механические свойства металлов характеризуются: 1) пределом прочности в кг/мм 2 ; 2) относительным удлинением в %;3) ударной вязкостью в кгм/см 2 ; 4) твердостью; 5) углом загиба. Перечисленные основные свойства металлов определяются следующими испытаниями: 1) на растяжение; 2) на загиб; 3) на твердость; 4) на удар. Все эти испытания производятся на образцах металла при помощи специальных машин.

Испытание на растяжение . Испытанием на растяжение определяют предел прочности и относительное удлинение металла.

Пределом прочности называется усилие, которое надо приложить на единицу площади поперечного сечения образца металла, чтобы разорвать его.

Для испытания на растяжение изготовляют образцы, форма и размеры которых установлены ГОСТ 1497-42. испытания проводятся на специальных разрывных машинах. Головки образца закрепляют в захваты машины, после чего дают нагрузку, растягивающую образец до разрушения.

Для испытания листового металла изготовляют плоские образцы. Малоуглеродистые стали имеют предел прочности около 40 кг/мм 2 стали повышенной прочности и специальные - 150 кг/мм 2 .

Относительное удлинение малоуглеродистой стали примерно равно 20%..

Относительное удлинение характеризует пластичность металла, оно снижается с повышением предела прочности.

Испытание на твердость . Для определения твердости металла применяется прибор Бринеля или Роквелла.

Твердость по Бринелю определяют следующим образом. Твердый стальной шарик диаметром 10,5 или 2,5 мм вдавливается под прессом в испытуемый металл. Затем при помощи бинокулярной трубки измеряют диаметр отпечатка, который получился под шариком на испытуемом металле. По диаметру отпечатка и по соответствующей таблице определяют твердость по Бринелю.

Твердость некоторых сталей в единицах по Бринелю:

Малоуглеродистая сталь......ИВ 120-130

Сталь повышенной прочности.... ИВ 200-300

Твердые закаленные стали.....ИВ 500-600



С увеличением твердости пластичность металла снижается.

Испытание на удар . Этим испытанием определяют способность металла противостоять ударным нагрузкам. Испытанием на удар определяют ударную вязкость металла.

Ударная вязкость определяется путем испытания образцов на специальных маятниковых копрах. Чем меньше ударная вязкость, тем более хрупок и тем менее надежен в работе такой металл. Чем выше ударная вязкость, тем металл лучше. Хорошая малоуглеродистая сталь имеет ударную вязкость, равную 10-15 кгм/см 2 .

Испытание на загиб . Арматура для железобетонных конструкций должна иметь на концах крюки с углом загиба до 180° и отгибы по длине арматуры на 45 и 90°. Поэтому арматурную сталь подвергают испытанию на холодный загиб.

Технологическими испытаниями устанавливают способность арматурной стали воспринимать деформации без нарушения целостности, т.е. без появления в ней трещин, надрывов, расслоений.

Для установления комплекса механических свойств металлов образцы из исследуемого материала подвергают статическим и динамическим испытаниям.

Статическими называются испытания, при которых прилагаемая к образцу нагрузка возрастает медленно и плавно.

4.2.1. К статическим испытаниям относят испытание на растяжение, сжатие, кручение, изгиб, а также определение твердости. В результате испытаний на статическое растяжение, которое проводят на разрывных машинах, получают диаграмму растяжения (рис.4.6 а) и диаграмму условных напряжений (рис. 4.6 б) пластичного металла.

Рис. 4.6. Изменение деформации в зависимости от напряжения: а – диаграмма растяжения пластичного материала; б – диаграмма условных напряжений пластичного материала

Из графика видно, что сколь бы ни было мало приложенное напряжение, оно вызывает деформацию, причем начальные деформации являются всегда упругими и величина их находится в прямой зависимости от напряжения. На кривой, приведенной на диаграмме(рис. 4.6), упругая деформация характеризуется линией ОА и ее продолжением.

Выше точки А нарушается пропорциональность между напряжением и деформацией. Напряжение вызывает уже не только упругую, но и пластическую деформацию.

Представленная на рис. 4.6 зависимость между приложенным извне напряжением и вызванной им относительной деформацией характеризует механические свойства металлов:

Наклон прямой ОА (рис. 4.6а) показывает жесткость металла или характеристику того, как нагрузка, приложенная извне, изменяет межатомные расстояния, что в первом приближении характеризует силы межатомного притяжения; тангенс угла наклона прямой ОА пропорционален модулю упругости (Е), который численно равен частному от деления напряжения на относительную упругую деформацию (Е= s / e);

Напряжение s пц (рис. 4.6б), которое называется пределом пропорциональности, соответствует моменту появления пластической деформации. Чем точнее метод измерения деформации, тем ниже лежит точка А;

Напряжение s упр (рис. 4.1б), которое называется пределом упругости, и при котором пластическая деформация достигает заданной малой величины, установленной условиями. Часто используют значения остаточной деформации 0,001; 0,005; 0,02 и 0,05%. Соответствующие пределы упругости обозначают s 0,005, s 0,02 и т.д. Предел упругости – важная характеристика пружинных материалов, которые используют для упругих элементов приборов и машин;

Напряжение s 0,2 , которое называется условным пределомтекучести и которому соответствует пластическая деформация 0,2 %. Физический предел текучести s т определяется по диаграмме растяжения, когда на ней имеется площадка текучести. Однако при испытаниях на растяжение большинства сплавов площадки текучести на диаграммах нет Выбранная пластическая деформация 0,2 % достаточно точно характеризует переход от упругих деформаций к пластическим, а напряжение s 0,2 несложно определяется при испытаниях независимо от того, имеется или нет площадка текучести на диаграмме растяжения. Допустимое напряжение, которое используют в расчетах, выбирают обычно меньше s 0,2 в 1,5 раза;



Максимальное напряжение s в, которое называется временным сопротивлением, характеризует максимальную несущую способность материала, его прочность, предшествующую разрушению, и определяется по формуле

s в = Р max / F o

Допустимое напряжение, которое используют в расчетах, выбирают меньше s в в 2,4 раза.

Пластичность материала характеризуется относительным удлинением d и относительным сужением y:

d = [(l к – l о) / l о ] * 100,

y = [(F о – F к) / F о ] * 100,

где l о и F о – начальные длина и площадь поперечного сечения образца;

l к - конечная длина образца;

F к – площадь поперечного сечения в месте разрыва.

4.2.2. Твердость – способность материалов сопротивляться пластической или упругой деформации при внедрении в него более твердого тела, которое называется индентором.

Существует разные методы определения твердости.

Твердость по Бринеллю определяется как отношение нагрузки при вдавливании стального шарика в испытуемый материал к площади поверхности полученного сферического отпечатка (рис. 4.7а).

HB = 2P / pD ,

D – диаметр шарика, мм;

d – диаметр лунки, мм

Рис. 4.7. Схемы испытания на твердость: а – по Бринеллю; б – по Роквеллу; в – по Виккерсу

Твердость по Роквеллу определяется глубиной проникновения в испытуемый материал алмазного конуса с углом при вершине 120 о или закаленного шарика диаметром 1,588 мм (рис. 4.7.б).

Конус или шарик вдавливают двумя последовательными нагрузками:

Предварительной Р о = 10 н;

Общей Р = Р о + Р 1 , где Р 1 – основная нагрузка.

Твердость обозначается в условных единицах:

Для шкал А и С HR = 100 – (h – h o) / 0,002

Для шкалы В HR = 130 – (h – h о) / 0,002

Для определения твердости используется алмазный конус при нагрузке 60 Н (HRA), алмазный конус при нагрузке 150 Н (HRC) или стальной шарик диаметром 1,588 мм (HRB).

Твердость по Виккерсу измеряют для деталей малой толщины и тонких поверхностных слоев, полученных химико-термической обработкой.

Эта твердость определяется как отношение нагрузки при вдавливании в испытуемый материал алмазной четырехгранной пирамиды с углом между гранями 136 о к площади поверхности полученного пирамидального отпечатка (рис. 4.7.в):

HV = 2P * sin a/2 / d 2 = 1,854 P/d 2 ,

a = 136 о – угол между гранями;

d – среднее арифметическое длин обеих диагоналей, мм.

Величину HV находят по известному d согласно формуле или по расчетным таблицам согласно ГОСТ 2999-75.

Микротвердость, учитывая структурную неоднородность металла, применяют для измерения малых площадей образца. При этом вдавливают пирамиду как при определении твердости по Виккерсу, при нагрузке Р = 5-500 Н, а среднее арифметическое длин обеих диагоналей (d) измеряется в мкм. Для измерения микротвердости используется металлографический микроскоп.

4.2.3. Сопротивление материала разрушению при динамических нагрузках характеризует ударная вязкость. Её определяют (ГОСТ 9454-78) как удельную работу разрушения призматического образца с концентратором (надрезом) посередине одним ударом маятникового копра (рис. 4.8): КС = К / S o (К – работа разрушения; S o – площадь поперечного сечения образца в месте концентратора).

Рис. 4.8. Схема испытаний на ударную вязкость

Ударную вязкость (МДж/м 2) обозначают KCU, KCV и KCT. Буквы КС означают символ ударной вязкости, буквы U, V, T – вид концентратора: U-образный с радиусом надреза r н = 1 мм, V-образный с r н = 0,25 мм; T – трещина усталости, созданная в основании надреза; KCU – основной критерий ударной вязкости; KCV и KCT используют в специальных случаях.

Работа, затраченная на разрушение образца, определяется по формуле

А н = Р * l 1 (cos b - cos a),

где Р - масса маятника, кг;

l 1 – расстояние от оси маятника до его центра тяжести;

b - угол после удара;

a - угол до удара

4.2.4. Циклическая долговечность характеризует работоспособность материала в условиях многократно повторяющихся циклов напряжений. Цикл напряжений – совокупность изменения напряжения между двумя его предельными значениями s max и s min в течение периода Т (рис. 4.9).

Рис. 4.9. Синусоидальный цикл изменения напряжений

Различают симметричные циклы (R = -1) и асимметричные (R изменяется в широких пределах). Различные виды циклов характеризуют различные режимы работы деталей машин.

Процессы постепенного накопления повреждений в материале под действием циклических нагрузок, приводящие к изменению его свойств, образованию трещин, их развитию и разрушению, называют усталостью, а свойство противостоять усталости – выносливостью (ГОСТ 23207 – 78).

На усталость деталей машин влияют ряд факторов (рис. 4.10).

Рис. 4.10. Факторы, влияющие на усталостную прочность

Разрушение от усталости по сравнению с разрушением от статической нагрузки имеет ряд особенностей:

Оно происходит при напряжениях, меньших, чем при статической нагрузке, меньших пределах текучести или временного сопротивления;

Разрушение начинается на поверхности (или вблизи от нее) локально, в местах концентрации напряжений (деформации). Локальную концентрацию напряжений создают повреждения поверхности в результате циклического нагружения либо надрезы в виде следов обработки, воздействия среды;

Разрушение протекает в несколько стадий, характеризующих процессы накопления повреждений в материале, образования трещин усталости, постепенное развитие и слияние некоторых из них в одну магистральную трещину и быстрое окончательное разрушение;

Разрушение имеет характерное строение излома, отражающее последовательность процессов усталости. Излом состоит из очага разрушения (места образования микротрещин) и двух зон – усталости и долома (рис. 4.11).

Рис. 4.11. Схема излома усталостного разрушения: 1 – очаг зарождения трещины; 2 – зона усталости; 3 – зона долома

4.3. Конструкционная прочность металлов и сплавов

Конструкционная прочность металлов и сплавов – это комплекс прочностных свойств, которые находятся в наибольшей корреляции со служебными свойствами данного изделия.

Сопротивление материала хрупкому разрушению является важнейшей характеристикой, определяющей надежность работы конструкции.

Переход к хрупкому разрушению обусловлен рядом факторов:

Природой сплава (типом решетки, химическим составом, величиной зерна, загрязнением сплава);

Особенностью конструкции (наличием концентраторов напряжений);

Условиями эксплуатации (температурным режимом, наличием нагрузки на металл).

Существует несколько критериев оценки конструкционной прочности металлов и сплавов:

Критерии, определяющие надежность металлов против внезапных разрушений (критическая температура хрупкости; вязкость разрушения; работа, поглощаемая при распространении трещины; живучесть при циклическом нагружении);

Критерии, определяющие долговечность материала (усталостная прочность; контактная выносливость; износостойкость; коррозионная стойкость).

Для оценки надежности материала используют также параметры: 1) ударную вязкость KCV и КCT; 2) температурный порог хладноломкости t 50 . Однако эти параметры только качественные, непригодные для расчета на прочность.

Параметром KCV оценивают пригодность материала для сосудов давления, трубопроводов и других конструкций повышенной надежности.

Параметр KCT, определяемый на образцах с трещиной усталости у основания надреза, более показателен. Он характеризует работу развития трещины при ударном изгибе и оценивает способность материала тормозить начавшееся разрушение. Если материал имеет KCT = 0, то это означает, что процесс его разрушения идет без затраты работы. Такой материал хрупок, эксплуатационно ненадежен. И, наоборот, чем больше параметр KCT, определенный при рабочей температуре, тем выше надежность материала в условиях эксплуатации. KCT учитывают при выборе материала для конструкций особо ответственного назначения (летательных аппаратов, роторов турбин и т. п.).

Порог хладноломкости характеризует влияние снижения температуры на склонность материала к хрупкому разрушению. Его определяют по результатам ударных испытаний образцов с надрезом при понижающейся температуре.

На переход от вязкого разрушения к хрупкому указывают изменения строения излома и резкое снижение ударной вязкости (рис.4.12), наблюдаемое в интервале температур (t в – t х) (граничные значения температур вязкого и хрупкого разрушения).

Рис. 4.12. Влияние температуры испытания на процент вязкой составляющей в изломе (В) и ударную вязкость материала KCV, KCT

Строение излома изменяется от волокнистого матового при вязком разрушении (t > t в) до кристаллического блестящего при хрупком разрушении (t < t х). Порог хладноломкости обозначают интервалом температур (t в – t н) либо одной температурой t 50 , при которой в изломе образца имеется 50 % волокнистой составляющей, и величина КСТ снижается наполовину.

О пригодности материала для работы при заданной температуре судят по температурному запасу вязкости, равному разности температуры эксплуатации и t 50 . При этом, чем ниже температура перехода в хрупкое состояние по отношению к рабочей температуре, тем больше температурный запас вязкости и выше гарантия от хрупкого разрушения.

4.4. Пути повышения прочности металлов

Принято различать техническую и теоретическую прочность. Техническую прочность определяют значением свойств: предела упругости (s 0,05); предела текучести (s 0,2); предела прочности (s в); модуля упругости (Е); предела выносливости (s R).

Под теоретической прочностью понимают сопротивление деформации и разрушению, которое должны были бы иметь материалы согласно физическим расчетам с учетом сил межатомного взаимодействия и предположения, что два ряда атомов одновременно смещаются относительно друг друга под действием напряжения сдвига.

Исходя из кристаллического строения и межатомных сил можно ориентировочно определить теоретическую прочность металла по следующей формуле:

t теор » G / 2p,

где G – модуль сдвига.

Теоретическое значение прочности, рассчитываемое по указанной формуле, в 100 – 1000 раз больше технической прочности. Это связано с дефектами в кристаллическом строении, и прежде всего с существованием дислокаций. Прочность металлов не является линейной функцией плотности дислокаций (рис. 4.13).

Рис. 4.13. Схема зависимости сопротивления деформации от плотности и других дефектов в металлах:1 – теоретическая прочность; 2-4 – техническая прочность (2 – усы; 3 – чистые неупрочненные металлы; 4 –сплавы, упрочненные легированием, наклепом, термической или термомеханической обработкой)

Как видно из рисунка 4.13, минимальная прочность определяется некоторой критической плотностью дислокаций а , приближенно составляющей 10 6 – 10 8 см -2 . Эта величина относится к отожженным металлам. Величина s 0,2 отожженных металлов составляет 10 -5 – 10 -4 G . Если а > 10 12 – 10 13 см -2 , то в этом случае могут образоваться трещины.

Если плотность дислокаций (количество дефектов) меньше величины а (рис.4.13), то сопротивление деформации резко увеличивается и прочность быстро приближается к теоретической.

Повышение прочности достигается:

Созданием металлов и сплавов с бездефектной структурой, т.е. получение нитевидных кристаллов («усов»);

Повышение плотности дефектов, в том числе дислокаций, а также структурных препятствий, затрудняющих движение дислокаций;

Создание композиционных материалов.

4.5. Влияние нагрева на строение и свойства деформированного металла (рекристаллизация)

Пластическая деформация (рис. 4.14) приводит к созданию неустойчивого состояния материала из-за возросшей внутренней энергии (внутренних напряжений). Деформирование металла сопровождается его упрочнением или так называемым наклепом . Самопроизвольно должны происходить явления, возвращающие металл в более устойчивое структурное состояние.

Рис. 4.14. Влияние нагрева на механические свойства и структуру нагартованного металла

К самопроизвольным процессам, которые приводят пластически деформированный металл к более устойчивому состоянию, относятся снятие искажения кристаллической решетки, другие внутризеренные процессы и образование новых зерен. Для снятия напряжений кристаллической решетки не требуется высокой температуры, так как при этом происходит незначительное перемещение атомов. Уже небольшой нагрев (для железа 300 –400 о С) снимает искажения решетки, а именно уменьшает плотность дислокаций в результате их взаимного уничтожения, слияния блоков, уменьшения внутренних напряжений, уменьшения количества вакансий и т.д.

Исправление искаженной решетки в процессе нагрева деформированного металла называется возвратом или отдыхом. При этом твердость металла снижается на 20-30 % по сравнению с исходным, а пластичность возрастает.

Параллельно с возвратом при температуре 0,25 – 0,3 Т пл происходит полигонизация (сбор дислокаций в стенки) и образуется ячеистая структура.

Одним из способов снятия внутренних напряжений при деформации материалов является рекристаллизация. Рекристаллизация , т.е. образование новых зерен, протекает при более высоких температурах, чем возврат, может начаться с заметной скоростью после нагрева выше определенной температуры. Чем выше чистота металла, тем ниже температура рекристаллизации. Между температурами рекристаллизации и плавления существует связь:

Т рек = а * Т пл,

где а – коэффициент, зависящий от чистоты металла.

Для технически чистых металлов а = 0,3 – 0,4, для сплавов а = 0,8.

Температура рекристаллизации имеет важное практическое значение. Чтобы восстановить структуру и свойства наклепанного металла (например, при необходимости продолжить обработку давлением путем прокатки, протяжки, волочения и т.п.), его надо нагреть выше температуры рекристаллизации. Такая обработка называется рекристаллизационным отжигом.

Процесс рекристаллизации можно разделить на два этапа:

Первичную рекристаллизацию или рекристаллизацию обработки, когда вытянутые вследствие пластической деформации зерна превращаются в мелкие округлой формы беспорядочно ориентированные зерна;

Вторичную или собирательную рекристаллизацию, заключающуюся в росте зерен и протекающую при более высокой температуре.

Первичная кристаллизация заключается в образовании новых зерен. Это обычно мелкие зерна, возникающие на поверхностях раздела крупных деформированных зерен. Хотя в процессе нагрева и происходят внутризеренные процессы устранения дефектов (возврат, отдых), все же они, как правило, полностью не заканчиваются, с другой стороны, вновь образовавшееся зерно уже свободно от дефектов.

К концу первой стадии рекристаллизации можно получить структуру, состоящую только из очень мелких зерен, в поперечнике имеющих размер в несколько микрон. Но в этот момент наступает процесс вторичной кристаллизации, заключающийся в росте зерна.

Возможны три существенно различных механизма роста зерна:

- зародышевый, состоящий в том, что после первичной кристаллизации вновь возникают зародышевые центры новых кристаллов, их рост приводит к образованию новых зерен, но их меньше, чем зерен в исходном состоянии, и поэтому после завершения процесса рекристаллизации зерна в среднем станут крупнее;

- миграционный , состоящий в перемещении границы зерна и увеличении его размеров. Крупные зерна растут за счет «поедания» мелких;

- слияние зерен , состоящее в постепенном «растворении» границ зерен и объединении многих мелких зерен в одно крупное. При этом образуется разнозернистая структура с низкими механическими свойствами.

Реализация одного из основных механизмов роста зависит:

От температуры. При низких температурах рост идет за счет слияния зерен, при высоких – за счет миграции границ зерен;

От исходного состояния (от степени деформации). При малой степени деформации (3-8%) первичная рекристаллизация затруднена, и рост зерна идет за счет слияния зерен. В конце процесса образуются гигантские зерна. При большой степени деформации (более 10 %) слияние зерен затрудняется, и рост идет за счет миграции границ зерен. Образуются более мелкие зерна. Таким образом, после отжига получается равновесная структура, изменяются механические свойства, снимается наклеп металла, повышается пластичность.

Введение. Составление программы испытаний турбогенератора

1 Рабочая программа испытаний турбогенератора ТВВ-63-2

1.1 Испытание повышенным напряжением частоты 50 Гц

1.2 Испытание изоляции обмотки повышенным выпрямленным напряжением

1.3 Определение характеристик генератора. Определение работоспособности промежуточного реле с катушкой из медного провода. Выбор реле максимального напряжения и добавочного термостабильного резистора для термокомпенсации. Определение начальной температуры обмотки статора электрической машины. Расчет намагничивающей и контрольной обмоток для испытания стали статора

Заключение


Введение

Одним из основных параметров работы любой электростанции и энергосистемы является непрерывность выработки энергии и снабжение ею потребителей. Непрерывность выработки энергии обеспечивается высокой надежностью всего энергетического - вспомогательного и основного, силового и слаботочного оборудования. Поэтому абсолютно все оборудование электростанции подвергается периодическим ремонтам и испытаниям: периодичность этих работ строго регламентируется ПТЭ и Нормами испытаний. Ни одно оборудование на электростанции не может быть включено в работу, если срок его ремонта и испытаний истек.

В данной курсовой работе составляется программа испытаний турбогенератора, определяется работоспособность промежуточного реле, выбирается реле максимального напряжения и добавочный термостабильный резистор, определяется начальная температура обмотки статора, а также производится расчет намагничивающей и контрольной обмоток для испытания стали статора.

I. Составление программы испытаний турбогенератора

Табл. 1.1 Основные параметры генератора

Тип турбогенератораТВФ-63-2Мощность номинальная78,75 МВА / 63 МВтНапряжение статора, номинальное10,5 кВТок статора, номинальный4330 АЁмкость одной фазы статора относительно земли и двух других заземленных фаз0,25 мкФСистема возбужденияВысокочастотная, ВТД-490-3000У3Сопротивление обмотки ротора, при 15 ºС0,103 ОмСистема охлаждения статораКосвенное, водородомСистема охлаждения ротораНепосредственное, водородом

1.1 Рабочая программа испытаний турбогенератора ТВВ-63-2

1.1.1 Испытание повышенным напряжением частоты 50 Гц

1. Условия проведения испытаний.

схема статорной обмотки генератора разобрана, каждая фаза испытывается отдельно, две другие фазы закорочены и заземлены;

обмотка генератора очищена от грязи, промыта и просушена;

в системе охлаждения и по обмотке циркулирует дистиллят с удельным сопротивлением не ниже 75 кОм/см. Расход дистиллята номинальный;

испытания проводятся в тёмное время суток при потушенном общем освещении машинного зала и включенном местном освещении. На последнем этапе местное освещение также отключается для наблюдения за коронированием обмотки статора;

схема испытании приведена на рисунке 1.2.

Испытательное напряжение вычисляется по формуле:

где - номинальное напряжение генератора;

3. Схема подключается на линейное напряжение, в котором меньше, чем в фазном высших гармоник, а следовательно, меньше возможность искажения синусоиды испытательного напряжения.

4. Перед началом испытаний необходимо отрегулировать пробивное напряжение разрядника FV на 110% испытательного напряжения:

Испытательная схема отключается от объекта испытаний, и испытательное напряжение поднимается на холостом ходу. Устанавливается заданное напряжение 21,12 кВ , и шары разрядника сближаются до возникновения пробоя.

Испытательное напряжение снижается до 50% и вновь поднимается до возникновения пробоя: напряжение пробоя разрядника должно быть в пределах (1,05-1,1) , то есть 20,16-21,12 кВ . Контрольный пробой шарового разрядника FV производится трижды подъёмом напряжения с.

Проведение испытаний повышенным напряжением частоты 50 Гц.

Напряжение поднимается с нуля плавно, со скоростью около 2%/с-0,38 кВ/с. Следовательно вся процедура подъёма напряжения будет длится около 1-2 мин.

В процессе подъёма напряжения необходимо прослушивать генератор на предмет возникновения потрескивания или шипения частичных разрядов. Одновременно необходимо наблюдать за обмоткой- не появится ли тление или искрение на поверхности обмотки.

В процессе подъёма напряжения необходимо делать промежуточные отсчеты по вольтметрам и индикатору частичных разрядов. В случае расхождения в показаниях вольтметра или резкого возрастания показаний индикатора частичных разрядов подъём напряжения следует прекратить и немедленно выяснить причину ненормальности.

При достижении полного испытательного напряжения оно выдерживается в течение 1 мин и плавно снижается до номинального напряжения.

На номинальном напряжении в течение 5 мин изоляция проверяется визуально, для чего желательно полностью выключить освещение в машинном зале при соблюдении мер безопасности.

При этом не должно наблюдаться сосредоточенное в отдельных точках свечение жёлтого и красного цвета, дым, тление бандажей и т.п.

Голубое и белое свечение допускается. По выполнению наблюдений коронирования обмотки напряжение плавно снижается до нуля, обмотка разряжается и заземляется. Освещение машинного зала включается.

Поочерёдно испытываются все три фазы обмотки статора.

Необходимое оборудование.

испытательная установка высокого напряжения согласно схеме на рисунке 1.1;

секундомер пружинный с ценой деления 0,2 с;

разрядно-заземляющая штанга;

температура обмотки принимается как среднее значение показании штатного термоконтроля статора.

Рисунок 1.1 Схема установки для испытания генератора повышенным напряжением промышленной частоты 50 Гц.

1.1.2 Испытание изоляции обмотки повышенным выпрямленным напряжением

1 Условия проведения испытаний:

схема обмотки статора разобрана, нейтраль разобрана;

вода из обмотки статора слита, обмотка продута сжатым воздухом;

испытания проводятся пофазно, две другие фазы при этом закорочены и заземлены.


Напряжение поднимается пятью ступенями по 1/5 полного испытательного напряжения, кВ,

На каждой ступени производится выдержка данного напряжения в течение 60 с.

На каждой ступени производится измерение тока утечки через изоляцию через 15 с и 60 с после установления неизменного напряжения: и.

По измеренным напряжению данной ступени и токам утечки и вычисляются для каждой ступени величины сопротивления изоляции для 15 с и 60 с, Ом,

На каждой ступени вычисляется коэффициент абсорбции,

В процессе испытаний строится график зависимости тока утечки от испытательного напряжения. Величина тока утечки не должна выходить за пределы, указанные в таблице 2.

Таблица 1.2 Предельные значения тока утечки от испытательного напряжения

Кратность испытательного напряжения по отношению к номинальному / 0,511,5 и вышеТок утечки , мА0,250,51

Если в процессе подъёма напряжения величина тока утечки начнёт резко возрастать и выйдет за допустимые пределы, то испытания необходимо прекратить до выяснения причины резкого возрастания тока утечки.

По достижению полного расчетного испытательного напряжения, оно выдерживается в течение одной минуты и далее плавно в течение двух минут снижается до нуля. По снижению напряжения до нуля необходимо разрядить обмотку наложением заземления через токоограничивающий резистор заземляющей штанги. Через 10 с необходимо наложить глухо заземление на вывод испытанной фазы.

Вычисляется коэффициент нелинейности,


где - наибольший ток утечки при полном испытательном напряжении;

Ток утечки при испытательном напряжении, равном приблизительно 0,5×Uном генератора;

Полное испытательное напряжение;

Испытательное напряжение, равное приблизительно 0,5×Uном генератора.

Коэффициент нелинейности должен быть меньше трёх.

Измерительная аппаратура и оборудование.

аппарат для испытания изоляции АИМ-90 (с миллиамперметром до 5мА).

секундомер пружинный с ценой деления 0,2 с.

разрядно-заземляющая штанга.

1.1.3 Определение характеристик генератора

1. Снятие характеристики трехфазного короткого замыкания (КЗ).

1.1 Условие проведения испытаний закоротки, устанавливаемые при снятии характеристики трёхфазного замыкания, должны быть рассчитаны на длительное протекание номинального тока генератора.

1.2 Характеристика КЗ в пределах не менее полуторократного номинального тока статора имеет прямолинейный характер, поэтому достаточно снять 4-5 точек характеристики до.

3 Если определение характеристики КЗ генератора не сопровождается изменением его потерь, то поддержание номинальной частоты вращения не обязательно.

4 Характеристика снимается при постепенном увеличении тока ротора и одновременной записи, установившихся значений на каждой ступени тока ротора и тока во всех фазах статора.

5 Отклонение характеристики КЗ, снятой при испытании от заводской должно находиться в пределах допустимых погрешностей измерений. Обращается особое внимание на то, чтобы характеристика стремилась к началу координат. В противном случае делаются повторные испытания, и если результат повторяется, то делается предположение о наличии витковых замыканий в обмотке ротора. В этом случае включение машины в работу не допускается.

2. Снятие характеристики холостого хода генератора (ХХ).

1 Перед подъёмом напряжения на генераторе для снятия характеристики измеряют остаточное напряжение на генераторе при разомкнутой обмотке ротора.

2 Для снятия характеристики холостого хода генератора производится плавный подъём напряжения до заданной величины при номинальной скорости вращения. Обычно напряжение на генераторе поднимается до 115% от номинального.

Испытательное напряжение, кВ,

2.3 Во время проведения пусковых испытаний генератора снятие характеристики холостого хода совмещают с проверкой витковой изоляции. Для этого напряжение на генераторе поднимается до напряжения, соответствующего номинальному току ротора, но не ниже 130% номинального напряжения. Продолжительность такого испытания - 5 мин.

Испытательное напряжение, кВ,

Снижая напряжение на генераторе, снимают основные точки характеристики. Последняя точка снимается при отключенном токе возбуждения. Всего снимают 10-15 точек примерно на равных интервалах напряжения. Полученную характеристику холостого хода смещают на D i 0 .

4 Отсчет показаний приборов производится только при установившихся параметрах одновременно на всех приборах по команде руководителя испытаний или наблюдателя, измеряющего ток ротора. Как отсчет, так и запись показаний приборов производится в делениях шкалы с указанием предела измерения.

5 После окончания измерений до разбора схемы необходимо построить характеристику и убедиться в отсутствии большого числа сомнительных точек, затрудняющих построение характеристики.

6 Для получения характеристики холостого хода в области повышенного напряжения, без значительного повышения напряжения на генераторе, ее снимают при пониженной скорости вращения с последующим пересчетом по формуле

где U НОМ - напряжение при номинальной скорости вращения;

n НОМ - номинальная скорость вращения;

n 1 - скорость вращения, при которой производились измерения.

7 Одновременно со снятием характеристики холостого хода при проведении пуско-наладочных испытаний проверяют симметрию напряжения. Для этого при установившемся режиме, близком к номинальному, измеряются напряжения между тремя фазами. Измерение производится одним вольтметром, что повышает точность измерения. Несимметрия напряжения D U определяется отношением разности между наибольшим U MAX и наименьшим U MIN измеренными напряжениями к среднему его значению линейного напряжения U СР :

Коэффициент несимметричности не должен превышать 5%.

8 По характеристике холостого хода определяется ток ротора, соответствующий номинальному напряжению генератора на холостом ходу. Он должен соответствовать расчетному значению. Если ток ротора выше расчетного, то следует искать ошибки в расчетах или монтаже (увеличенный воздушный зазор или неправильная установка ротора по высоте, отклонения в качестве стали).

9 Измерительная аппаратура и оборудование.

вольтметр класса 0,5 или 0,2, подключающийся через «вольтметровый ключ», позволяющий в процессе испытаний быстро переключать вольтметр на другие линейные напряжения;

частотомер с пределами 45-55 Гц, а для снятия характеристики холостого хода при пониженной частоте- частотомер с низким пределом измерения 40Гц;

милливольтметр класса 0,2, подключенный к штатному или специально установленному в цепи ротора шунту класса 0,2.

Рис.1.2 Схема снятие характеристик трехфазного короткого замыкания и холостого хода

II. Определение работоспособности промежуточного реле с катушкой из медного провода

Таблица 2.1 Исходные данные

Номинальное напряжение реле, , В110Минимальное напряжение срабатывания реле, , В100Сопротивление катушки реле при 20 ºС, , Ом8500Максимальная температура реле, , ºС85Номинальное напряжение сети постоянного тока, , В110

Минимальное напряжение сети оперативного постоянного тока, при котором схема должна работать, В:

Минимальный ток срабатывания реле, А:

Сопротивление обмотки реле при максимальной температуре 85 ºС, Ом:

3 Ток в горячей обмотке реле с сопротивлением 10039 Ом при возможном минимальном напряжении в сети постоянного тока, А:

Заключение о работоспособности реле.

Так как ток в обмотке реле в самом тяжёлом режиме меньше минимального тока срабатывания реле, то можно сделать вывод о невозможности применения исследуемого реле в данных условиях.

III. Выбор реле максимального напряжения и добавочного термостабильного резистора для термокомпенсации

Таблица 3.1 Исходные данные

Требуемое напряжение срабатывания реле, Uмср, В55Допустимая погрешность срабатывания, %2Диапазон изменения температуры реле, ºС10 - 30

Изменение сопротивления обмотки реле, %,

В заданном диапазоне температур сопротивление обмотки реле, а следовательно и напряжение срабатывания изменяются на 8%. Для решения поставленной задачи необходимо применить схему, в которой ток, протекающий через реле не зависел бы от температуры реле.

По /2,табл.3-5/ выбираем низковольтное реле РН51/6.4, имеющее следующие характеристики:

  • напряжение срабатывания Uср= 6.4 В;
  • сопротивление обмотки реле при 20 ºС R 20 = 2400 Ом.

Все остальное напряжение 55-6,4=48,6 В погашается на сопротивлении резистора, выполненного из температуронезависимого резистивного материала - константана или манганина.

Сопротивление добавочного резистора, Ом,

Суммарное изменение сопротивления цепи реле с добавленным резистором в заданном диапазоне температур, %,

Так как суммарное изменение сопротивления цепи реле с добавленным резистором, а значит и изменение сопротивления срабатывания реле не превысило 2% - предельно допустимой нормы, то можно сделать вывод о возможности применения рассчитанного реле и резистора в заданном диапазоне температур.

IV. Определение начальной температуры обмотки статора электрической машины

турбогенератор реле резистор статор

Таблица 4.1 Исходные данные

Отсчет№12345Времяt, c10204090160Перегрев0C57,955,952,344,937,9

Расчет производится графически (рис 4.1) и в цифровой форме.

Определяется постоянная времени остывания, Т, с:

где t - отрезок времени;

q Н - перегрев машины в начале отрезка времени t i ;

q - перегрев машины в конце отрезка времени t i .

За расчетное значение постоянной времени остывания берется среднеарифметическое значение ТСР:

Начальный перегрев машины аналитическим методом:

t ОКР = 200 С

q ОБМ = q Н + t ОКР ;

q ОБМ = 59,67+20 =79,67 0 С .

Рис. 4.1 Процесс остывания электрической машины после ее отключения в полулогарифмических координатах.

Начальный перегрев машины графическим методом:

Начальная температура обмотки статора электрической машины при температуре окружающей среды t ОКР = 200 С

q ОБМ = q Н + t ОКР ;

q ОБМ = 59,74+ 20 = 79,74 0С.

Разница между аналитическим и графическим методом 0,09%.

Рис. 4.2 Схема измерения сопротивления обмотки статора электрической машины непосредственно после ее отключения

V. Расчет намагничивающей и контрольной обмоток для испытания стали статора

Таблица 5.1 Исходные данные

Наружный диаметр, dH, M3,05Внутренний диаметр, dB, м1,36Полная длина спинки статора, l, м6,7Ширина вентиляционного канала, lк, м0,01Число вентиляционных каналов, n60Высота зуба статора, hэ, м0,27Коэффициент заполнения стали, k0,93Теплоемкость стали, m, кВт×ч/(кг×град)1,429 × 10-4

Принимается, что 1/3 мощности расходуется на потери во внешнюю среду на конвекцию и лучеиспускание. Для питания обмоток намагничивания выбирается напряжение 380 В.

Число витков намагничивающей и контрольной обмоток.

Потребляемый намагничивающей обмоткой ток, активную и полную

мощности.

Скорость нагрева активной стали.

  1. Определение массы активной стали статора

Длина спинки:

Высота спинки:

Чистое сечение спинки:

Средний диаметр спинки:

Масса активной стали статора:

  1. Расчет необходимой мощности.

Требуемая скорость подъема температуры a = 5 0С/ч. Необходимая для этого мощность:

Определяется значение индукции для создания удельных потерь р 0 = 1,072 Вт/кг /1,таблица и рис.3/

В = 0,825 Тл.

  1. Расчет числа витков намагничивающей обмотки.

Если включить намагничивающую обмотку на линейное напряжение сети собственных нужд 380 В, то потребуется следующее число витков:

Практически невозможно создать дробное число витков. Поэтому выбираем один виток W =1. При этом индуктивное сопротивление намагничивающей обмотки неизбежно уменьшится против расчетного значения, ток намагничивания и индукция - увеличатся. Можно воспользоваться переключением отпаек трансформатора собственных нужд и переключить его на минимальное напряжение (+10% номинального) 418 В. данное напряжение позволит создать в статоре индукцию:

  • что на 30% меньше вычисленного ранее значения индукции. При В = 0.577 Тл нагрев будет происходить несколько медленнее, но в данном случае иного выхода нет.
  • Потребляемые ток и мощность.

Для создания индукции В = 0,577 Тл по графику /1, рис.3/ определяем требуемые удельные ампер-витки:0 = 71 А-в/м

Полные ампер-витки:

При одном витке W = 1 ток намагничивания численно равен:

= AW / W,= 552 /1 = 552 A.

Полная мощность намагничивающей обмотки:

= I × U,= 552 × 418 = 230,7 кВА .

Активная мощность при индукции В = 0,577 Тл вычисляется по величине удельных потерь /1, рис.3/ р0 = 0,621 Вт/кг:

Р = р 0 × G,

Р = 0,621 × 197799,525 = 122833,505Вт =122,8 кВт.

Коэффициент мощности схемы намагничивания:

Кабель для обмотки намагничивания, исходя из допускаемой в данном случае плотности тока j = 2,0 А/мм2, должен быть сечением не менее:

  1. Расчет контрольной обмотки.

Учитывая, что напряжение на контрольной обмотке при равном числе витков с намагничивающей обмоткой будет близким к напряжению 380 В , выбираем для контрольной обмотки один виток W К = 1, ЭДС контрольной обмотки при индукции в статоре В = 1 Тл определяется:

Добавочный резистор R (рис. 5.1) для вольтметра 300 В, 150 дел. и внутренним сопротивлением RВ = 30 кОм выбирается таким образом, чтобы при 724 В (соответствует В=1 Тл) его показания были бы равны 100 делениям:

Рис. 5.1 Схема индукционного нагрева статора генератора намагничиванием стали статора

Заключение

В данной курсовой работе была составлена программа испытаний для турбогенератора. Была определена работоспособность промежуточного реле в определенных условиях, также выбрано реле максимального напряжения и добавочный термостабильный резистор для термокомпенсации. Также был произведен расчет для определения начальной температуры, графическим и аналитическим методами. Рассчитаны, для определенных генераторов, контрольные и намагничивающие обмотки.

Библиографический список источников информации

1.Объемы и нормы испытания электрооборудования / Под. общ. ред. Б.А. Алексеева, Ф.Л. Когана, Л.Г. Мамикоянца. - 6-е изд. - М.: НЦ ЭНАС, 1998.

2.Справочник по наладке электрооборудования электрических станций и подстанций / Под. ред. Э.С. Мусаэляна - М.: Энергоатомиздат, 1984.

.Мусаэлян Э.С. Наладка и испытания электрооборудования электрических станций и подстанций. - М.: Энергоатомиздат, 1986.

Технологические пробы весьма разнообразны. Они служат лишь для качественной или сравнительной оценки металла.

Обычно проведение технологической пробы оговаривается техническими условиями. Как правило, размеры образцов и условия испытания должны быть строго одинаковыми, лишь в этом случае результаты могут сравниваться.

В качестве показателей пригодности металла для каждого вида пробы выбираются свои характеристики. Такими характеристиками могут служить угол загиба, степень обжатия, число перегибов проволоки до возникновения первых признаков разрушения, степень высадки и т.д.

В качестве примеров приведем следующие технологические пробы:

Проба на загиб в холодном и нагретом состоянии

Схематически она показана на рисунке:


Загиб может производиться до определенного угла, либо до параллельности сторон, либо до соприкосновения сторон. Металл, выдерживающий пробу, не должен иметь трещин.

Такая проба определяет способность металла принимать заданный по размерам и форме загиб.

Проба на осадку в холодном состоянии


Проба на осадку в холодном состоянии (рис. 31) позволяет определять способность металла к заданной по размерам и форме деформации сжатия.

Образец считается выдержавшим пробу, если при осадке до заданной высотыh в нем не появились трещины или изломы.

Проба на загиб трубы в холодном и горячем состоянии (рис. 32) выявляет способность металла трубы принимать заданный по размерам и форме загиб. Испытание состоит в загибе заполненного сухим песком или канифолью отрезка трубы на 90" вокруг оправки.

После загиба труба не должна иметь:

    • волосовин,

      надрывов,

      расслоений.


Проба на перегиб проволоки

Проба на перегиб проволоки производится с целью выявления способности проволоки выдерживать повторный загиб (рис. 33).

Число перегибов до разрушения свидетельствует о способности металла выдерживать многократные перегибы.

Проба на навивание проволоки


Проба на навивание проволоки (рис. 34).


Самое обсуждаемое
Айвар (икра) из баклажан и перца — рецепт с фото Сербское блюдо айвар Айвар (икра) из баклажан и перца — рецепт с фото Сербское блюдо айвар
Рецепт: Груша запеченная Рецепт: Груша запеченная "Эксклюзив для шаха" - вариации на тему рецепта из сериала "Кухня"
Рецепты маринада для запекания свинины в духовке и советы кулинаров Рецепты маринада для запекания свинины в духовке и советы кулинаров


top