Вычислительная машина. Живая счётная машина Что такое живая счетная машина

Вычислительная машина. Живая счётная машина Что такое живая счетная машина

Департамент образования Владимирской области.

Муниципальное общеобразовательное учреждение –

Средняя общеобразовательная школа № 6

«История развития математики на Земле»

Ученика 8 класса «Б»

Карякина Павла

Руководитель – Шубина И. Н.

Математика - царица наук, арифметика – царица математики.
К. Гаусс

Геометрия – это наука хорошо измерять.

Вдохновение нужно в геометрии, как и в поэзии.
А. С. Пушкин

Вступление

1. Арифметика каменного века

2. Числа начинают получать имена

3. Великолепная семерка

4. Живая счетная машина

5. Сорок и шестьдесят

6. Операции над числами

7. Дюжины и гроссы

8. Первые цифры

9. Как в древности выполняли арифметические действия

10. Абак и пальцевый счет

Заключение

Приложение. Рисунки

Каждый день на уроках математики мы узнаем о свойствах чисел и фигур, решаем уравнения, задачи, строим графики, учимся складывать десятичные и обыкновенные дроби и т.д. Но кто и когда придумал цифры, стал выполнять над ними арифметические действия, кто дал им имена, кем и когда были придуманы дроби, где впервые стали решать задачи с помощью уравнений, когда возникли отрицательные числа, - про все это я постараюсь дать ответы в своем реферате.
Для этого нам придется побывать и на стойбищах первобытных людей и на островах Океании, заглянуть в Древние Египет и Вавилон, заглянем в первую книгу по математике в Древней Руси, написанную Кирике Новгородцем, в « Арифметику » Леонтия Магницкого, которую чуть ли не наизусть знал великий русский ученый Михаил Васильевич Ломоносов.

1. АРИФМЕТИКА КАМЕННОГО ВЕКА

Люди научились считать 25 – 30 тысяч лет тому назад. Несколько десятков лет назад ученые – археологи обнаружили стойбища русских людей. В нем они нашли волчью кость, на которую древний охотник нанес 55 зарубок. Узор на кости состоял из одиннадцати групп, по пять зарубок в каждой. При этом первые пять групп он отделил от остальных круглой чертой. Позднее в Сибири и других местах были найдены сделанные в ту же далекую эпоху каменные орудия и украшения, на которых, то же были черточки и точки сгруппированные по 3, по 5, или по 7. Первыми понятиями математики, с которыми они столкнулись, были « меньше », « больше » и « столько же ». Если одно племя меняло пойманных им рыб на сделанные людьми другого племени каменные ножи, не нужно было считать, сколько принесли рыб и сколько ножей. Достаточно было положить рядом с каждой рыбой один нож, чтобы обмен состоялся. Чтобы с успехом заниматься сельским хозяйством, понадобились арифметические знания. Без подсчёта дней трудно было определить, когда надо засевать поля, когда начинать полив, когда ждать потомства от животных. Надо было знать, сколько овец в стаде, сколько мешков зерна положено в амбаре.

И вот более 8 тысяч лет тому назад пастухи стали делать из глины кружки – по одному на каждую овцу. Но в его стаде были не только овцы – он пас и коров, и коз, и ослов. Поэтому пришлось делать из глины и другие фигурки. Если овцы приносили приплод, пастух прибавлял к кружкам новые, а если часть овец шла на мясо, несколько кружков приходилось убирать. Так, ещё не умея считать, занимались древние люди арифметикой.

2. ЧИСЛА НАЧИНАЮТ ПОЛУЧАТЬ ИМЕНА

Перекладывать каждый раз глиняные фигурки с места на место было довольно утомительным занятием. Удобнее было сначала пересчитать товары, а уж потом приступать к обмену. Но прошло много тысячелетий, прежде чем люди научились пересчитывать их. Для этого им пришлось придумать названия для чисел.

Ученые считают, что сначала название придумали числа 1 и 2. Когда римляне придумывали имя числу 1, они исходили из того, что солнце на небе всегда одно - « солюс ». А название для числа 2 связано с предметами, встречающимися попарно, - крыльями, ушами и т. д. Но бывало, что числам 1 и 2 давали иные имена. Их называли « я » и « ты ». А всё, что шло после 2, называлось « много ». Но потом понадобилось называть и другие числа. И тут придумали замечательный выход: числа стали называть, повторяя несколько раз названия для единиц и двоек. Например, на языке папуасских племён числительное « один » звучит «урапун », а числительное « два » - « окоза ». Число 3 они назвали « окоза – урапун », а число 4 – « окоза – окоза ». Так они дошли до числа 6, которое получило имя « окоза – окоза – окоза ». А дальше у них шло знакомое для нас слово - « много ».

Позднее других получило имя числительное 3. А так как до того племена считали «один», «два», «много», то это новое числительное стали применять вместо слова «много». И сейчас мать, рассердившись на непослушного сына, говорит ему: « Что я, три раза должна повторять одно и то же!» Иногда числом три обозначали весь окружающий человека мир – его делили на земное, подземное и небесное царство. Поэтому число три стало у многих народов священным. Другие народы делили мир не по вертикали, а по горизонтали. Они знали четыре стороны света - восток, запад, север, юг, знали четыре главных ветра. У этих народов главную роль играло число четыре, а не число три. А вот слово для обозначения « тысячи » возникло 5 – 7 тысяч лет тому назад.

3. ВЕЛИКОЛЕПНАЯ СЕМЕРКА.

Я уже говорил, что папуасы после «окоза – окоза» говорили слово которое на их языке обозначало «много». Так было, вероятно, и у других народов. Во всяком случае, в русских поговорках и пословицах слово «семь» часто выступает в роли слова «много»: «Семеро одного не ждут», «Семь бед - один ответ», «Семь раз отмерь – один раз отрежь» и т.д.

То, что 7 – число особое люди считали очень давно. Ведь еще древние охотники, а потом и древние земледельцы и скотоводы наблюдали за небом. Их внимание привлекало созвездие Большой Медведицы – изображение семи звезд этого созвездия часто встречаются на древнейших изделиях.

Существовало ещё более глубокая связь между небом и «семеркой». Следя за изменениями формы лунного диска, люди заметили, что через семь дней после новолуния на небе видна половина этого диска. А ещё через семь дней вся Луна сияет на полуночном небе. Проходит еще семь дней - и опять остается половина диска, а еще через семь дней на ночном небе сияют только звезды, а Луны совсем не видно. Так пришли они к понятию о лунном месяце, состоящих из четырех семерок дней.

Особенно чтили число 7 на Древнем Востоке. Несколько тысячелетий назад между реками Тигром и Евфратом жил народ Шумеры. Они обозначали число 7 тем же знаком, что и всю вселенную. Почему они так делали? Некоторые ученые думают, что они выражали этим числом шесть главных направлений (вверх, вниз, вперед, назад, влево, вправо) да ещё то место, от которого идет этот отсчет. От шумеров и вавилонян семерки перешли к другим народам. Древние греки насчитывали, например, семь чудес света. Да и сейчас мы пользуемся семидневной неделей.

4. ЖИВАЯ СЧЕТНАЯ МАШИНА.

Чем больше зерна собирали с полей люди, чем многочисленнее становились их стада, тем большие числа становились им нужны. Нужны были названия позволяющие называть не единицы, а десятки и сотни. Если попробовать сказать слово « сто », пользуясь папуасскими названиями, придется пятьдесят раз повторять слово окоза.

Поэтому был необходим совершенно новый подход и старый метод счёта вытеснил новый – счёт по пальцам. Пальцы оказались прекрасной вычислительной машиной. С их помощью можно было считать до 5, а если взять две руки то и до десяти. А в странах где люди ходили босиком то и до двадцати.

А научившись считать по пальцам до десяти, люди сделали следующий шаг вперёд и стали считать десятками. И если одни папуасские племена умели считать лишь до шести, то другие доходили в счёте до нескольких десятков. Только для этого приходилось приглашать сразу много счетчиков. Например, чтобы сосчитать всего – навсего до 30, пришлось бы работать трём папуасам. И сейчас есть племена, которые говорят « две руки » вмесо « десять » и « руки и ноги » вместо « двадцать ». А в Англии первые десять чисел называют общим именем – « пальцы »

5. СОРОК И ШЕСТЬДЕСЯТ.

Скачок от десятка к сотне был сделан не сразу. Сначала следующим за десятью узловым числом стало у одних народов число 40, а у других – 60. Число сорок играло важную роль в старо - русской системе мер: в пуде считалось 40 фунтов, в бочке – 40 ведер и т.д. Но были народы, у которых в самой глубокой древности счет шел до шести. Когда они перешли на счет десятками, то особое имя у них получили не четыре, а шесть десятков. Так случилось у шумеров и древних вавилонян. От них почитания числа шестьдесят перешло к древним грекам. Во многих календарях считалось, что год состоит из 360, то есть шести шестидесятков, дней. Но самое удивительное то, что следы счета шестидесятками сохранились до наших дней. Ведь до сих пор мы делим час на 60 минут, а минуту - 60 секунд. Окружность делим на 360 градусов, градус - на 60 минут, а минуту – на 60 секунд. Но потребность людей в больших числах росли и росли. Наступил момент, когда уже и 40, и 60, и даже 100 перестали казаться слишком большими числами. Тогда для того, чтобы сказать « очень много », стали говорить « сорок сороков » или «шестьдесят шестидесятков ». Шумеры называли шестьдесят шестидесятков словом «шар». Это слово стало воплощать у них идею Вселенной. А у народов пользующихся сотней, идею невообразимого множества воплощала сотня сотен. В русском языке она получила название «тьма». И сейчас, увидев большую толпу, мы восклицаем: «Народу – тьма!»

6. ОПЕРАЦИЯ НАД ЧИСЛАМИ.

С операциями сложения и вычитания люди имели дело задолго до того, как числа получили имена. Когда несколько сборщиков кореньев или рыболовов складывали в одно место свою добычу, они выполняли операцию сложения. Правда, при этом складывались не числа, а совокупности (или, как говорят математики, множество) предметов. А когда из собранных орехов часть шла в пищу, люди выполняли вычитание – запас орехов уменьшался. С операцией умножение люди познакомились, когда стали сеять хлеб и увидели, что собранный урожай в несколько раз больше, чем количество посеянных семян. Наконец, когда добытое на охоте мясо животных или собранные орехи делили поровну между всеми членами племени, выполняли операцию деления. Но должны были пройти тысячелетия, пока люди поняли, что складывать, вычитать, умножать и делить можно не сами совокупности предметов, а числа. Так люди узнали, что «два плюс два равно четыре».

7. ДЮЖИНЫ И ГРОССЫ.

Серьезным соперником десятичной системы счета оказалась двенадцатеричная. Вместо десятков применяли при счете дюжины, то есть группы из двенадцати предметов. Во многих странах даже теперь некоторые товары, например вилки, ножи, ложки, продают дюжинами, то есть по двенадцать штук. А еще в начале двадцатого века в торговле применяли и дюжину дюжин, которую называли «гроссом», то есть «большой дюжиной».

Древние люди давно знали путь, который проходит Солнце за год по звездному небу. Когда они раздели год на двенадцать месяцев, то каждую часть этого пути назвали «домом Солнца». Так возникли созвездия Зодиака.

Откуда же взялся этот интерес к дюжине? Ответить на этот вопрос помогли ученым глиняные таблички, на которых был написан самый древний шумерский счет. С удивлением обнаружили, что, хотя шумеры потом научились считать до таких громадных чисел, как 12.960.000 («шар шаров» - так называли это число), когда – то они считали не лучше, чем папуасы. Только вместо «урапун» и «окоза» у них были другие слова: «бе» и «ПЕШ». И счет у них шел так, «бе»(то есть один), «бе – бе»(то есть два), «ПЕШ»(то есть три, « ПЕШ – бе» - четыре, число двенадцать имело имя « ПЕШ –ПЕШ – ПЕШ- ПЕШ». Такой счет можно объяснить, предположив, что шумеры считали в древности не по пальцам, а по суставам пальцев.

Поскольку 12 было чтимым числом, то число, следующее за ним, казалось чем – то излишним, чрезмерным. Несчастливым считался у шумеров и 13 месяц, который им приходилось время от времени вставлять в свой календарь, что бы согласовать лунные месяцы с солнечным годом. Отсюда, вероятно, и пошел предрассудок, по которому число 13 считают несчастливым и называют его «чертовой дюжиной».

Несколько раз совершались попытки ввести двенадцатеричную систему счисления, то есть вместо десятков и сотен считать дюжинами и гроссами. Однако дальше разговора дело не пошло: непосильной оказалась задача переучить всех на новые обозначения и правила счета. Разумеется, победа десятичной системы счисления над всеми соперницами объясняется тем, что у человека на каждой руке по пять пальцев. Но странные повороты делает история! Именно двоичная система счета оказалась самой полезной для современной техники. На основе двоичной системе работают современные быстродействующие вычислительные машины.

8. ПЕРВЫЕ ЦИФРЫ.

И так, на папирусе ли, на глине ли, на камне ли, но людям необходимо было изображать числа. И тут был сделан весьма важный шаг: люди догадались писать вместо группы единиц один знак. Писать много раз один и тот же знак, разумеется, весьма неудобно. Поэтому постепенно отдельные знаки стали сливаться вместе. Так появились особые обозначения для чисел. Эти знаки уже были цифрами.

Одна из древнейших нумераций египетская. Для записи чисел древние египтяне употребляли иероглифы, означающие (последовательно): единицу, десять, сто, тысячу, десять тысяч, сто тысяч (лягушка), миллион (человек с поднятыми руками), десять миллионов.

У древних греков были две системы обозначения чисел. По более старой из них числа от 1 до 4 обозначались с помощью вертикальных черточек, а для числа 5 применялась буква Г – первая буква греческого слова «пента», то есть «пять». Далее использовались буквы: Н – 100, Х -1000, М – 10 000 и т. д.

Но эта система уступила место иной, в которой числа обозначали буквами с черточками над ними. В древнегреческом алфавите было 24 буквы. К ним прибавили три вышедшие из употребления старинные буквы и разбили получившиеся 27 букв на 3 группы, по 9 букв в каждой. Первой девяткой букв греки обозначали числа от 1 до 9. Например, первой буквой своего алфавита альфа они обозначали число 1. Второй бета – число два и т. д. до буквы тета, которая обозначала число 9. Вторая девятка букв обслуживала числа от 10 до 90, а третья – числа от ста до девятьсот.

Числовые обозначения в Древнем Риме напоминали древний способ греческой нумерации. У римлян были специальные обозначения не только для чисел 1, 10, 100 и 1000, но и для чисел 5, 50, 500. Например: Х – 10, С – 100, D – 500 и М – 1000. Обозначая числа, римляне записывали столько цифр, что бы их сумма давала нужное число. Например число 362 представляли так: CCCLXII , как видим, сначала идут большие числа потом меньшие. Но иногда римляне писали меньшую цифру пере большей. Это означало, что нужно не складывать, а вычитать. Например, число 9 обозначалось IX (без одного десять). Самым большим числом, которое умели обозначать римляне, было 100 000.

Хотя римская нумерация была не слишком удобной, она распространилась почти по всей ойкумене – так называли в древности греки известный им обитаемый мир.

В древности на Руси до числа 10 000. Оно в самых старинных памятниках писали числа при помощи букв славянского алфавита, над которыми ставили особый значок – титло. Это делалось для того, чтобы отличить их от обычных слов. Вот, например, запись числа 444 (см. рисунок …). Но алфавитная нумерация имела и крупный недостаток: с их помощью нельзя обозначать сколь угодно большие числа. Правда, славяне умели записывать и большие числа, но для этого в алфавитной системе добавляли новые обозначения. Числа 1000, 2000 и т. д. записывали теме же буквами, что 1, 2 и т. д. только слева внизу ставили специальный знак. В хозяйственной жизни довольствовались сравнительно небольшими числами – так называемым «малым счетом», который доходило называется «тьма», то есть темное число, которое нельзя ясно представить.

В дальнейшем граница малого счета была отодвинута до 10 в восьмой степени, до числа «тьма тем». Но наряду с этим «малым числом» употреблялась вторая система, называвшаяся «великим числом или счетом». В нем употреблялись более высокие разряды: тьма – 10 в шестой степени, легион – 10 в двенадцатой степени, леодр – 10 в двадцать четвертой степени, ворон – десять в сорок восьмой степени, колода – десять воронов – 10 в сорок девятой степени. Для обозначения этих больших чисел наши предки употребляли оригинальный способ: число единиц любого из перечисленных высших разрядов обозначалось той же буквой, что и простые единицы, но окруженной для каждого числа соответственным бордюром.

В первом печатном русском учебнике математики Л. Ф. Магницкого даются уже сейчас термины для больших чисел (миллион, биллион, триллион, квадриллион, квинтиллион).

Характерным «числолюбцем» Древней Руси был монах Кирик. Он написал в 1134 году книгу «Кирика – диакона Новгородского Антониева монастыря учения, им же ведати человеку числа всех лет». В этой книге Кирик подсчитывает, сколько месяцев, сколько дней, сколько часов он прожил вычисляет в месяцах, неделях и в днях время, прошедшее до 1134 года от «сотворения мира», выполняет разные вычисления дней церковных праздников на будущее время.

При счисления времени Кирик употребляет «дробные часы», подразумевая под ними пятые, двадцать пятые, сто двадцать пятые и т.д. доли часа. Доходя в этом счете до седьмого дробного часа, каковых в двенадцатичасовом дне оказывается 937 500, он заявляет: «… больше всего не бывает». Это, по-видимому, означает, что более мелких делений часа не употребляли.

Алфавитная нумерация была мало пригодна для оперирования с большими числами. В ходе развития человеческого общества эта система уступила место позиционным системам.

Первой известной нам позиционной системой счисления была шестидесятеричная система вавилонян. Как же вавилоняне записывали свои цифры? Они поступали так: записывали все числа от 1 до 59 по десятичной системе, применяя принцип сложения. При этом они пользовались двумя знаками: прямым клином – для обозначения единицы и лежачим клином – для десяти. Эти знаки служили цифрами в их системе (см. рис…) Таким образом «цифры», то есть все числа от 1 до 59, вавилоняне записывали по десятичной системе, а число в целом – по системе с основанием шестьдесят. Поэтому – то мы называем их систему шестидесятеричной. Шестидесятеричная система вавилонян сыграла большую роль в развитие математики и астрономии. Следы её сохранились до наших дней. Так, мы до сих пор делим час на 60 минут, а минуту на 60 секунд. Точно так же окружность мы дели на 360 равных частей (градусов).

В начале нашей эры индейцы племени майя, которые жили на полуострове Юкотан в Центральной Америке, пользовались другой позиционной системе с основанием 20. Свои цифры индейцы майя, как и вавилоняне, записывали, пользуюсь принципом сложения. Единицу они обозначали точкой, а пять – горизонтальной чертой (см. рис. …), но в этой системе был знак для нуля. Он напоминал по своей форме полузакрытый глаз.

Десятичная позиционная система впервые сложилась в Индии не позднее шестого века нашей эры. Здесь же был введен символ для нуля.

Итак, позиционная система счисления возникли независимо одна от другой в древнем Двуречье, у племени майя и, наконец, в Индии. Все это говорит о том, что возникновение позиционного принципа не было случайностью.
Каковы же были предпосылки для его создания? Чтобы ответить на эти вопросы, мы снова обратимся к истории. В древнем Китае, Индии и в некоторых других странах существовали системы записи, построенные на мультипликативном принципе. Пусть, например, десятки обозначаются символом Х, а сотни – С. Тогда запись числа 323 схематично будет выглядеть так: 3С2Х3.

В таких системах для записи одинакового числа единиц, десятков, сотен или тысяч применяются одни и те же символы, но после каждого символа пишется название соответствующего разряда.

Следующей системой к позиционному принципу было опускание разрядов при письме (подобно тому как мы говорим «три двадцать», а не «три рубля двадцать копеек»). Но при записи больших чисел по системе с основанием 10 очень часто был необходим символ для обозначения нуля.

Как же появился нуль? Мы знаем, что уже вавилоняне употребляли межразрядовый знак. Начиная со второго века до нашей эры греческие ученые познакомились с многовековыми астрономическими наблюдениями вавилонян. Вместе с их вычислительными таблицами они переняли и вавилонскую шестидесятеричную систему счисления, но только числа от 1 до 59 записывали не с помощью клиньев, а в своей, алфавитной нумерации. Но самое замечательное было то, что для обозначения пропущенного шестидесятеричного разряда греческие астрономы начали употреблять символ О (первая буква греческого слова – ничто). Этот знак, по-видимому, и был прообразом нашего нуля. Действительно, индийцы, владевшие уже мультипликативным принципом записи чисел, как раз между вторым и шестым веками нашей эра познакомились с греческой астрономией. Одновременно они познакомились с шестидесятеричной нумерацией и греческим круглым нулем. Индийцы и соединили принципы нумерации греческих астрономов со своей десятичной системой. Это и был завершающий шаг в создании нашей нумерации. Из Индии новая система распространилась по всему миру. В страны Европы новая индийская нумерация была занесена арабами в десятом – тринадцатом веках (отсюда и название «арабские цифры»). Постепенное изменение написание цифр можно проследить по рисунку …

9. КАК В ДРЕВНОСТИ ВЫПОЛНЯЛИ АРИФМЕТИЧЕСКИЕ ДЕЙСТВИЯ.

Если со сложением и вычитанием ни у египтян, ни у вавилонян, то хуже обстояло дело с умножением. И тут египтяне придумали интересный выход: они заменили умножением на любое число удвоением, то есть сложением числа самим с собой. Например, если надо было умножить число 34 на 5, то поступали так: умножали 34 сначала на 2, потом ещё раз на 2. Записывали столбиками (конечно, в своих обозначениях чисел) ...

1

34

2

68

4

136

Похожий способ умножения применялся через несколько тысяч лет русскими крестьянами. Пусть требуется умножить 37 на 32. Составляли два столбца чисел – один удвоением, начиная с числа 37, другое раздвоением (то есть делением на два), начиная с числа 32:

37

32

74

16

148

8

296

4

592

2

1184

1

По другому пути пошли в Вавилоне. Они сосчитали раз навсегда с помощью повторного сложения произведения и полученные результаты занесли в таблицу. Вавилоняне любили составлять таблицы. У них были таблицы квадратов и кубов, обратных чисел и даже сумм квадратов и кубов.

10. АБАК И ПАЛЬЦЕВЫЙ СЧЕТ.

Греки и римляне производили вычисления с помощью специальной счетной доски - абака. Доска абака была разделена на полоски. Каждая полоска назначалась для откладывания тех или иных разрядов чисел: в первую полоску ставили столько камешков или бобов, сколько в числе единиц, во вторую полоску - сколько в нем десятков, в третью - сколько сотен, и так далее. На рисунке показано число 510 742. Так как у римлян камешек называли калькулюс (сравните с русским словом "галька"), то счет на абаке получил название калькуляция. И сейчас подсчет расходов называют калькуляцией, а человека, выполняющего этот подсчет - калькулятором. Но после того как два десятка лет тому назад были сделаны маленькие приборы, выполняющие за считанные секунды сложные расчеты, название "калькулятор" перешло к ним.
Один и тот же камешек на абаке мог означать и единицы, и десятки, и сотни, и тысячи - все дело лишь в том, на какой полоске он лежал. Чаще всего абаком пользовались для денежных расчетов. Наши счеты представляют собой также абак, в котором место полосок занимают проволоки для единиц, десятков и т. д. А у китайцев на каждой проволоке не по десять шариков, как в наших счетах, а по семь. Последние два шарика отделены от первых, и каждый из них обозначает пять. Когда при расчетах набирается пять шариков, вместо них откладывают один шарик второго отделения счетов. Такое устройство китайских счетов уменьшает необходимое число шариков.
Счет на абаке сменил более древний счет на пальцах. Приверженцы старого метода стали его совершенствовать. Они научились даже умножать на пальцах однозначные числа от 6 до 9. Для этого на одной руке вытягивали столько пальцев, на сколько первый множитель превосходит число 5, а на второй делали то же самое для второго множителя. Остальные пальцы загибали. Потом бралось число вытянутых пальцев и умножалось на 10, далее перемножались числа, показывавшие, сколько загнуто пальцев на руках. К числу вытянутых пальцев, умноженному на 10, добавлялось полученное произведение.
В дальнейшем пальцевой счет был усовершенствован, и с помощью пальцев научились показывать числа до 10 000. А китайские купцы торговались, взяв друг друга за руки и указывая цену нажатием на определенные суставы пальцев.

Возникновение чисел позволило решать сложные задачи, встречавшиеся в практической деятельности, пришлось, кроме натуральных чисел, придумать другие числа – обыкновенные, десятичные дроби, отрицательные числа, научиться использовать пропорции, а потом создать новую науку – алгебру, позволявшую решать любые задачи с помощью уравнений.

Когда – то числа служили только для решения практических задач. А потом их стали изучать – узнавать их свойства. С помощью чисел выражали и такие понятия, как справедливость, совершенство, дружба. Ученые установили, как по записи числа узнать, на какие другие числа они делятся. Они научились находить простые числа и стали изучать их свойства.

Много веков мечтали люди создать машины, которые бы сами выполняли порученные им работы – ткали и пряли, ковали и вытачивали. Чтобы создать такие автоматы, понадобились машины, умеющие выполнять арифметические операции, понимать и перерабатывать различные сведения. Сейчас машины – математики применяются во всех областях человеческой деятельности.

Приложение

Рисунок 1

Клинописная запись чисел в древнем Вавилоне

Рисунок 2

Цифры в древнем Египте

Рисунок 3


Рисунок 5 Цифры индейцев племени майя

Рисунок 6 Алфавитное изображение чисел в Древней Греции.

Рисунок 7 Обозначение чисел в Древнем Риме.

Рисунок 8 Обозначение чисел в Древней Руси

Тьма

Леодр

Самое большое число - колода . Буква заключалась в квадратные скобки, но не справа и слева, как у обычных букв, а сверху и снизу. Плюс справа и слева ставились два ромбика.

Запись в славянской нумерации числа 444

«Пальцевой счёт» - Древние Египтяне. Абак. Счет дюжинами. Счет десятками. Пальцевый счет. Указательный и большой палец. Название числа. Умножение двузначных чисел. Поверья. Развитие пальцевого счета. Записи вычислений. Способы счета. Как считали сороками. Конек-Гобунок. Появление счета на пальцах. Начало счета. Пальцевый счет сегодня.

«Задания для устного счёта» - Нахождение значений математических выражений. Развитие познавательных интересов к предмету. Материалы устного счета по физике. Требования. Математика. Сравнение математических выражений. Устный счет. Дифференциация. Формы восприятия устного счета. Тренажерные задания. Межпредметная линия. Решение уравнений.

«Формирование вычислительных навыков» - Технология совершенствования вычислительных навыков. Задания-тренажёры. Способы быстрого сложения и вычитания натуральных чисел. Уровень подготовленности и развития каждого ученика. Основная задача технологии. Способы быстрых вычислений. Умножение двузначного числа на 111. Умножение на 9, 99, 999. Все виды заданий тренажёра разбиты на отдельные части.

«Приёмы устного счёта» - Олег Степанов. Число. Материал для тренинга. Двузначное число. Округление. Вопрос. Феноменальные способности. Этапы исследования. Без карандаша и бумаги. Диагностика. Карл Фридрих Гаусс. Ученик. Иноди. Умножить. Быстрое умножение. Лидоро. Урания Диамонди. Картина. Арраго. Шакунтала Деви. Вычисления.

«Счёт на пальцах» - Значит, и англичане когда-то считали по пальцам. И сейчас есть племена, которые говорят "две руки" вместо "десять" и "руки и ноги" вместо "двадцать". Пальцы оказались настолько тесно связанными со счетом, что на древнегреческом языке понятие "считать" выражалось словом "пятерить".

«Математика «Устный счёт»» - Самостоятельная работа. Стоимость. Таблица умножения. Звонок. Примеры. Зарядка для глаз. Пропущенные числа. Пальчиковая гимнастика. Устный счёт. Количество. Задачи. Проверка. Нужный знак. Классная работа. Урок математики. Длины отрезков. Таблица. Настроение.

Всего в теме 24 презентации

Презентация на тему "Позиционные системы счисления" по информатике в формате powerpoint. В данной презентации для школьников рассмотрены различные позиционные системы счисления, существовавшие в разные исторические периоды. Автор презентации: Иванова Галина Анатольевна.

Фрагменты из презентации

Великолепная семерка

  • То, что 7 - число особое, люди считали очень давно. Ведь еще древние охотники, а потом и древние земледельцы и скотоводы наблюдали за небом. Их внимание издавна привлекало созвездие Большой Медведицы - изображения семи звезд этого созвездие часто встречаются на древнейших
  • Существовала еще более глубокая связь между небом и "семеркой". Следя за изменениями формы лунного диска, люди заметили, что через семь дней после новолуния на небе видна половинка этого диска. А еще через семь дней вся Луна сияет на полуночном небе. Так пришли они к понятию о лунном месяце, состоявшем из четырех семерок дней.

Живая счетная машина

  • Для счета нужны стали название, позволявшие называть не единицы, а десятки и сотни. И старые методы счета вытеснил новый - счет по пальцам. Пальцы оказались прекрасной вычислительной машиной. С их помощью можно было считать до 5, а если взять две руки, то и до 10. А в странах, где люди ходили босиком, по пальцам легко было считать до 20. Тогда этого практически хватало для большинства потребностей людей.
  • А научившись считать по пальцам до десяти, люди сделали следующий шаг вперед и стали считать десятками. И если одни папуасские племена умели считать лишь до шести, то другие доходили в счете до нескольких десятков
  • Во многих языках слова "два" и "десять" созвучны. Может быть, это объясняется тем, что когда-то слово "десять" означало "две руки". И сейчас есть племена, которые говорят "две руки" вместо "десять" и "руки и ноги" вместо "двадцать". А в Англии первые десять чисел называют общим именем - "пальцы". Значит, и англичане когда-то считали по пальцам

Абак и пальцевой счет

  • Греки и римляне производили вычисления с помощью специальной счетной доски - абака. Доска абака была разделена на полоски. Каждая полоска назначалась для откладывания тех или иных разрядов чисел: в первую полоску ставили столько камешков или бобов, сколько в числе единиц, во вторую полоску - сколько в нем десятков, в третью - сколько сотен, и так далее. На рисунке показано число 510 742. Один и тот же камешек на абаке мог означать и единицы, и десятки, и сотни, и тысячи - все дело лишь в том, на какой полоске он лежал. Чаще всего абаком пользовались для денежных расчетов
  • Счет на абаке сменил более древний счет на пальцах. Приверженцы старого метода стали его совершенствовать. Они научились даже умножать на пальцах однозначные числа от 6 до 9. Для этого на одной руке вытягивали столько пальцев, на сколько первый множитель превосходит число 5, а на второй делали то же самое для второго множителя. Остальные пальцы загибали. Потом бралось число вытянутых пальцев и умножалось на 10, далее перемножались числа, показывавшие, сколько загнуто пальцев на руках. К числу вытянутых пальцев, умноженному на 10, добавлялось полученное произведение.

Сорок и шестьдесят

  • Скачок от десятка к сотне был сделан не сразу. Сначала следующим за десятью числом стало у одних народов число 40, а у других - 60. То, что это число играло большую роль у русских и их предков, можно объяснить тем, что раньше в их жизни особое значение имело число 4. Поэтому, когда начали считать десятками, то именно четыре десятка считалось самым большим числом.
  • Были народы, у которых в самой глубокой древности счет шел до шести. Когда они перешли на счет десятками, то особое положение получили у них не четыре, а шесть десятков. Так случилось у шумеров и древних вавилонян. От них почитание числа 60 перешло к древним грекам
  • Следы счета шестидесятками сохранились до наших дней. Ведь до сих пор мы делим час на 60 минут, а минуту на 60 секунд. Окружность делят на 360, то есть 6*60 градусов, градус - на 60 минут, а минуту - на шестьдесят секунд. Так что самые точные часы и угломерные приборы хранят в себе память о глубочайшей древности.

Вавилон

  • Более экономной была система записи, применявшаяся в Вавилоне. Числа от 1 до 59 писались примерно так же, как и в Египте: единица обозначалась клином, а десяток - знаком, составленным из двух косых клиньев. А дальше вавилоняне поступали почти так же, как это делаем сейчас мы. Чтобы написать, например, число 205, то есть 3 *
  • 60 + 25, они изображали. Первые три клина означали, что три раза берется единица высшего разряда (то есть 3 раза по 60), а дальше шло обозначение 25.

Дюжины и гроссы

  • Серьезным соперником десятеричной системы счета оказалась двенадцатеричная. Вместо десятков применяли при счете дюжины, то есть группы из двенадцати предметов. Во многих странах даже теперь некоторые товары, например, вилки, ножи, ложки, продают дюжинами
  • А еще в начале 20-го века в торговле применяли и дюжину дюжин, которую называли "гроссом", то есть "большой дюжиной", и даже дюжину гросс - "массу". Так что, пересчитав предметы в двенадцатеричной системе, можно было сказать: пять гроссов, восемь дюжин и еще шесть картофелин.

Созданный ими компьютер работал в тысячу раз быстрее, чем «Марк-1». Но обнаружилось, что большую часть времени этот компьютер простаивал, ведь для задания метода расчётов (программы) в этом компьютере приходилось в течение нескольких часов или даже нескольких дней подсоединять нужным образом провода. А сам расчет после этого мог занять всего лишь несколько минут или даже секунд.

Чтобы упростить и ускорить процесс задания программ, Мокли и Эккерт стали конструировать новый компьютер, который мог бы хранить программу в своей памяти. В 1945 г. к работе был привлечен знаменитый математик Джон фон Нейман , который подготовил доклад об этом компьютере. Доклад был разослан многим ученым и стал широко известен, поскольку в нем фон Нейман ясно и просто сформулировал общие принципы функционирования компьютеров, т. е. универсальных вычислительных устройств. И до сих пор подавляющее большинство компьютеров сделано в соответствии с теми принципами, которые изложил в своем докладе в 1945 г. Джон фон Нейман. Первый компьютер, в котором были воплощены принципы фон Неймана, был построен в 1949 г. английским исследователем Морисом Уилксом .

Разработка первой электронной серийной машины UNIVAC (Universal Automatic Computer) начата примерно в 1947 г. Эккертом и Мокли, основавшими в декабре того же года фирму ECKERT-MAUCHLI. Первый образец машины (UNIVAC-1) был построен для бюро переписи США и пущен в эксплуатацию весной 1951 г. Синхронная, последовательного действия вычислительная машина UNIVAC-1 создана на базе ЭВМ ENIAC и EDVAC . Работала она с тактовой частотой 2.25 МГц и содержала около 5000 электронных ламп. Внутреннее запоминающее устройство с ёмкостью 1000 12-разрядных десятичных чисел было выполнено на 100 ртутных линиях задержки.

Вскоре после ввода в эксплуатацию машины UNIVAC-1 ее разработчики выдвинули идею автоматического программирования. Она сводилась к тому, чтобы машина сама могла подготавливать такую последовательность команд, которая нужна для решения данной задачи.

Сильным сдерживающим фактором в работе конструкторов ЭВМ начала 1950-х годов было отсутствие быстродействующей памяти. По словам одного из пионеров вычислительной техники Д. Эккерта, «архитектура машины определяется памятью». Исследователи сосредоточили свои усилия на запоминающих свойствах ферритовых колец, нанизанных на проволочные матрицы.

В 1951 г. Дж. Форрестер опубликовал статью о применении магнитных сердечников для хранения цифровой информации. В машине «Whirlwind-1» впервые была применена память на магнитных сердечниках. Она представляла собой 2 куба 32 х 32 х 17 с сердечниками, которые обеспечивали хранение 2048 слов для 16-разрядных двоичных чисел с одним разрядом контроля на четность.

Вскоре в разработку электронных компьютеров включается фирма IBM . В 1952 г. она выпустила свой первый промышленный электронный компьютер IBM 701, который представлял собой синхронную ЭВМ параллельного действия, содержащую 4000 электронных ламп и 12 000 германиевых диодов. Усовершенствованный вариант машины IBM 704 отличался высокой скоростью работы, в ней использовались индексные регистры и данные представлялись в форме с плавающей запятой.

IBM 704
После ЭВМ IBM 704 была выпущена машина IBM 709, которая, в архитектурном плане, приближалась к машинам второго и третьего поколений. В этой машине впервые была применена косвенная адресация и впервые появились каналы ввода-вывода.

В 1956 г. фирмой IBM были разработаны плавающие магнитные головки на воздушной подушке. Изобретение их позволило создать новый тип памяти - дисковые запоминающие устройства (ЗУ), значимость которых была в полной мере оценена в последующие десятилетия развития вычислительной техники. Первые ЗУ на дисках появились в машинах IBM 305 и RAMAC. Последняя имела пакет, состоявший из 50 металлических дисков с магнитным покрытием, которые вращались со скоростью 12 000 об./мин. На поверхности диска размещалось 100 дорожек для записи данных, по 10 000 знаков каждая.

Вслед за первым серийным компьютером UNIVAC-1 фирма Remington-Rand в 1952 г. выпустила ЭВМ UNIVAC-1103, которая работала в 50 раз быстрее. Позже в компьютере UNIVAC-1103 впервые были применены программные прерывания.

Сотрудники фирмы Rernington-Rand использовали алгебраическую форму записи алгоритмов под названием «Short Code» (пррвый интерпретатор, созданный в 1949 г. Джоном Мокли). Кроме того, необходимо отметить офицера ВМФ США и руководителя группы программистов, в то время капитана (в дальнейшем единственная в ВМФ женщина-адмирал) Грейс Хоппер , которая разработала первую программу-компилятор. Кстати, термин «компилятор» впервые ввела Г. Хоппер в 1951 г. Эта компилирующая программа производила трансляцию на машинный язык всей программы, записанной в удобной для обработки алгебраической форме. Г. Хоппер принадлежит также авторство термина «баг» в применении к компьютерам. Как-то через открытое окно в лабораторию залетел жук (по-английски - bug), который, сев на контакты, замкнул их, чем вызвал серьезную неисправность в работе машины. Обгоревший жук был подклеен в административный журнал, где фиксировались различные неисправности. Так был задокументирован первый баг в компьютерах.

Фирма IBM сделала первые шаги в области автоматизации программирования, создав в 1953 г. для машины IBM 701 «Систему быстрого кодирования». В СССР А. А. Ляпунов предложил один из первых языков программирования. В 1957 г. группа под руководством Д. Бэкуса завершила работу над ставшим впоследствии популярным первым языком программирования высокого уровня, получившим название ФОРТРАН . Язык, реализованный впервые на ЭВМ IBM 704, способствовал расширению сферы применения компьютеров.

Алексей Андреевич Ляпунов
В Великобритании в июле 1951 г. на конференции в Манчестерском университете М. Уилкс представил доклад «Наилучший метод конструирования автоматической машины», который стал пионерской работой по основам микропрограммирования. Предложенный им метод проектирования устройств управления нашел широкое применение.

Свою идею микропрограммирования М. Уилкс реализовал в 1957 г. при создании машины EDSAC-2. М. Уилкс совместно с Д. Уиллером и С. Гиллом в 1951 г. написали первый учебник по программированию «Составление программ для электронных счетных машин».

В 1956 г. фирма Ferranti выпустила ЭВМ «Pegasus», в которой впервые нашла воплощение концепция регистров общего назначения (РОН). С появлением РОН было устранено различие между индексными регистрами и аккумуляторами, и в распоряжении программиста оказался не один, а несколько регистров-аккумуляторов.

Появление персональных компьютеров

Вначале микропроцессоры использовались в различных специализированных устройствах, например в калькуляторах . Но в 1974 г. несколько фирм объявили о создании на основе микропроцессора Intel-8008 персонального компьютера, т. е. устройства, выполняющего те же функции, что и большой компьютер, но рассчитанного на одного пользователя. Вначале 1975 г. появился первый коммерчески распространяемый персональный компьютер «Альтаир-8800 » на основе микропроцессора Intel-8080 . Этот компьютер продавался по цене около 500 долл. И хотя возможности его были весьма ограничены (оперативная память составляла всего 256 байт, клавиатура и экран отсутствовали), его появление было встречено с большим энтузиазмом: в первые же месяцы было продано несколько тысяч комплектов машины. Покупатели снабжали этот компьютер дополнительными устройствами: монитором для вывода информации, клавиатурой, блоками расширения памяти и т. д. Вскоре эти устройства стали выпускаться другими фирмами. В конце 1975 г. Пол Аллен и Билл Гейтс (будущие основатели фирмы Microsoft) создали для компьютера «Альтаир» интерпретатор языка Basic , что позволило пользователям достаточно просто общаться с компьютером и легко писать для него программы. Это также способствовало росту популярности персональных компьютеров.

Успех «Альтаир-8800» заставил многие фирмы также заняться производством персональных компьютеров. Персональные компьютеры стали продаваться уже в полной комплектации, с клавиатурой и монитором, спрос на них составил десятки, а затем и сотни тысяч штук в год. Появилось несколько журналов, посвященных персональным компьютерам. Росту объема продаж весьма способствовали многочисленные полезные программы практического значения. Появились и коммерчески распространяемые программы, например программа для редактирования текстов WordStar и табличный процессор VisiCalc (1978 г. и 1979 г. соответственно). Эти и многие другие программы сделали покупку персональных компьютеров весьма выгодной для бизнеса: с их помощью стало возможно выполнять бухгалтерские расчеты, составлять документы и т. д. Использование же больших компьютеров для этих целей было слишком дорого.

В конце 1970-х годов распространение персональных компьютеров даже привело к некоторому снижению спроса на большие компьютеры и мини-компьютеры (мини-ЭВМ). Это стало предметом серьезного беспокойства фирмы IBM - ведущей компании по производству больших компьютеров, и в 1979 г. фирма IBM решила попробовать свои силы на рынке персональных компьютеров. Однако руководство фирмы недооценило будущую важность этого рынка и рассматривало создание персонального компьютера всего лишь как мелкий эксперимент - что-то вроде одной из десятков проводившихся в фирме работ по созданию нового оборудования. Чтобы не тратить на этот эксперимент слишком много денег, руководство фирмы предоставило подразделению, ответственному за данный проект, невиданную в фирме свободу. В частности, ему было разрешено не конструировать персональный компьютер «с нуля», а использовать блоки, изготовленные другими фирмами. И это подразделение сполна использовало предоставленный шанс.

В качестве основного микропроцессора компьютера был выбран новейший тогда 16-разрядный микропроцессор Intel-8088 . Его использование позволило значительно увеличить потенциальные возможности компьютера, так как новый микропроцессор позволял работать с 1 мегабайтом памяти, а все имевшиеся тогда компьютеры были ограничены 64 килобайтами.

В августе 1981 г. новый компьютер под названием IBM PC был официально представлен публике, и вскоре после этого он приобрел большую популярность у пользователей. Через пару лет компьютер IBM PC занял ведущее место на рынке, вытеснив модели 8-битовых компьютеров.

IBM PC
Секрет популярности IBM PC в том, что фирма IBM не сделала свой компьютер единым неразъёмным устройством и не стала защищать его конструкцию патентами. Наоборот, она собрала компьютер из независимо изготовленных частей и не стала держать спецификации этих частей и способы их соединения в секрете. Напротив, принципы конструкции IBM PC были доступны всем желающим. Этот подход, называемый принципом открытой архитектуры, обеспечил потрясающий успех компьютеру IBM PC, хотя и лишил фирму IBM возможности единолично пользоваться плодами этого успеха. Вот как открытость архитектуры IBM PC повлияла на развитие персональных компьютеров.

Перспективность и популярность IBM PC сделала весьма привлекательным производство различных комплектующих и дополнительных устройств для IBM PC. Конкуренция между производителями привела к удешевлению комплектующих и устройств. Очень скоро многие фирмы перестали довольствоваться ролью производителей комплектующих для IBM PC и начали сами собирать компьютеры, совместимые с IBM PC. Поскольку этим фирмам не требовалось нести огромные издержки фирмы IBM на исследования и поддержание структуры громадной фирмы, они смогли продавать свои компьютеры значительно дешевле (иногда в 2-3 раза) аналогичных компьютеров фирмы IBM.

Совместимые с IBM PC компьютеры вначале презрительно называли «клонами», но эта кличка не прижилась, так как многие фирмы-производители IBM PC-совместимых компьютеров стали реализовывать технические достижения быстрее, чем сама IBM. Пользователи получили возможность самостоятельно модернизировать свои компьютеры и оснащать их дополнительными устройствами сотен различных производителей.

Персональные компьютеры будущего

Основой компьютеров будущего станут не кремниевые транзисторы , где передача информации осуществляется электронами, а оптические системы. Носителем информации станут фотоны, так как они легче и быстрее электронов. В результате компьютер станет более дешевым и более компактным. Но самое главное, что оптоэлектронное вычисление гораздо быстрее, чем то, что применяется сегодня, поэтому компьютер будет намного производительнее.

ПК будет мал по размерам и иметь мощь современных суперкомпьютеров . ПК станет хранилищем информации, охватывающей все аспекты нашей повседневной жизни, он не будет привязан к электрическим сетям. Этот ПК будет защищен от воров благодаря биометрическому сканеру , который будет узнавать своего владельца по отпечатку пальца.

Основным способом общения с компьютером будет голосовой. Настольный компьютер превратится в «моноблок», вернее, в гигантский компьютерный экран - интерактивный фотонный дисплей. Клавиатура не понадобится, так как все действия можно будет совершать прикосновением пальца. Но для тех, кто предпочитает клавиатуру, в любой момент на экране может быть создана виртуальная клавиатура и удалена тогда, когда в ней не будет нужды.

Компьютер станет операционной системой дома, и дом начнет реагировать на потребности хозяина, будет знать его предпочтения (приготовить кофе в 7 часов, запустить любимую музыку, записать нужную телепередачу, отрегулировать температуру и влажность и т. д.)

Размер экрана не будет играть никакой роли в компьютерах будущего. Он может быль большим, как ваш рабочий стол, или маленьким. Большие варианты компьютерных экранов будут основаны на жидких кристаллах, возбуждаемых фотонным способом, которые будут иметь гораздо более низкое энергопотребление, чем сегодняшние LCD-мониторы. Цвета будут яркими, а изображения - точными (возможны плазменные дисплеи). Фактически сегодняшняя концепция «разрешающей способности» будет в значительно степени атрофирована.

Как считали в древности? Как считали в старые времена?

В течение тысячелетий создавали народы легенды и мифы, отражая в них свои мечты и чаяния. Не умея летать как птицы или бежать быстрее лани, люди придумывали сказки о ковре-самолете или сапогах-скороходах. Страдая от голода, они мечтали о скатерти-самобранке. Но больше всего хотелось им облегчить свой тяжелый труд. Так возникали сказки о Емеле и его чудо-печке, лампе Алладина, о чудесных механических и волшебных помощниках и многие другие.

Но, пока поэты писали стихи, а писатели — романы, ученые делали первые шаги по созданию автоматов. Еще в древности были изобретены автоматы, отпускавшие в храмах «святую» воду, когда в них опускали монетку. Другие автоматы открывали двери при приближении жреца и творили другие «чудеса», заставлявшие народ трепетать перед всемогуществом богов. Греческие мастера построили довольно сложные механические игрушки, в том числе механический театр, в котором разыгрывались целые представления. Эти чудесные механизмы были единичны, широкого применения они не получили, т.к. основная часть населения была необразованна. Однако жизнь заставила людей научиться считать и разбираться в механизмах.

Сначала люди считали «в уме», затем начали использовать подручные средства - костяные, глиняные и деревянные бусины, даже собственные пальцы помогали людям.

Самые древние устройства счета появились не сразу. Сначала потребность в счете была небольшой, и людям хватало собственных пальцев и пальцев своих соседей для того, чтобы подсчитать военную добычу, число охотничьих трофеев, ножей, копий, воинов и т.д. Письменность в глубокой древности развита была слабо, а считать необходимо было каждому человеку, поэтому и приходилось употреблять для счёта собственные пальцы, зарубки на костях, камешки, бусы и другие небольшие предметы. Но когда люди стали возделывать землю и приручили некоторых животных, им потребовалось гораздо больше предметов для счета и умение выполнять действия с числами.

Чтобы с успехом заниматься сельским хозяйством, необходимы были арифметические знания. Без подсчета дней трудно было определить, когда надо засевать поля, когда начинать полив, когда ждать потомства от животных. Надо было знать, сколько овец в стаде, сколько мешков зерна положено в амбары и т.д.

Несколько десятков лет назад ученые-археологи обнаружили стойбище древних людей. В нем они нашли волчью кость, на которой 30 тысяч лет тому назад какой-то древний охотник нанес пятьдесят пять зарубок. Видно, что, делая эти зарубки, он считал по пальцам. Узор на костисостоялиз одиннадцати групп, по пять зарубок в каждой. При этом первые пять групп он отделил от остальных длинной чертой. Древнейшим артефактом такого рода является «кость Ишанго», найденная в Конго (возраст — около двадцати тысяч лет). Это берцовая кость бабуина, покрытая засечками.

До сих пор в русском языке сохранилось слово«бирка». Теперь так называют дощечку с номером или надписью, которую привязывают к кулям с товарами, ящикам, тюкам и т. д. А еще двести-триста лет тому назад это слово означало совсем иное. Так называли куски дерева, на которых зарубками отмечали сумму долга или подати. Бирку с зарубками раскалывали пополам, после чего одна половина оставалась у должника, а другая — у заимодавца или сборщика податей. При расчете половинки складывали вместе, и это позволяло определить сумму долга или подати без споров и сложных вычислений.

Древние люди изобрели так называемый «пальцевой счет»- когда не только числа до нескольких сотен изображались на пальцах рук, но даже арифметические действия выполнялись с помощью пальцев (в русском языке слово«пять» напоминает «пясть» — часть кисти руки, производное от него — «запястье» — часто используют и сейчас). Древние египтяне полагали, что в загробном мире душу умершего подвергают экзамену по счету на пальцах. А в одной из древнегреческих комедий герой говорит, что предпочитает вычислять приходящиеся с него налоги на пальцах. Древние люди научились также умножать на пальцах однозначные числа от 6 до 9.


На Руси был распространен такой способ счета на пальцах: пронумеруйте мысленно пальцы на обеих руках. Мизинец - 6, безымянный - 7, средний - 8, указательный - 9, большой - 10. Допустим, вы хотите узнать, сколько будет 8 х 7. Соедините вместе средний палец левой руки (8) с безымянным пальцем правой (7). А теперь считайте. Два соединённых пальца плюс те, что под ними, указывают на количество десятков в произведении. В данном случае - 5. Число пальцев, оказавшихся над одним из сомкнутых пальцев, умножьте на число пальцев над другим сомкнутым пальцем. В нашем случае 2 х 3 = 6. Это - число единиц в искомом произведении. Десятки складываем с единицами, и ответ готов - 56. Проверьте остальные варианты, и вы убедитесь, что этот старинный русский способ сбоев не даёт.

Полное описание пальцевого счета составил ирландский монах Беда Достопочтенный, живший в VII - VIII веках новой эры. Он подробно изложил способы представления на пальцах различных чисел вплоть до миллиона. Кое-где пальцевой счет сохранился даже сегодня. Например, на крупнейшей в мире чикагской хлебной бирже маклеры на пальцах, не произнося ни единого слова, сообщают о предложениях, запросах, ценах на товары. А китайские купцы торговались, взяв друг друга за руки и указывая цену нажатием на определенные суставы пальцев. Не отсюда ли произошли слова «ударить по рукам», означавшие когда-то заключение торговой сделки?

С появлением первых государств Древнего Египта, Междуречья, Китая, Древнего Рима, государств Америки пришлось выполнять вычисления с очень большими числами - ведь приходилось рассчитывать налоги, поступление в казну военной добычи, дань покоренных государств, обсчитывать строительство дорог, храмов. Купцы вели учет товаров, полученной прибыли и т.д. В те времена появилась даже государственная должность для тех, кто вел расчеты - писец. Чем больше были числа и сложнее расчеты, тем больше было шансов запутаться и ошибиться. А наиболее сложные расчеты требовалось проводить сначала жрецам, а затем и ученым для астрономических расчетов - движение луны, звезд, солнца от которых зависело сельское хозяйство, урожай и благосостояние всего государства!

Как древние инженеры, математики и астрономы смогли создавать механизмы и делать вычисления, которые даже сегодня считаются сложными?

Счетные приспособления.

В древних государствах на писцов - людей, которые выполняли расчеты, - была возложена очень непростая задача - они должны были вести учет государственных доходов и расходов, а это всегда были очень большие числа, которые трудно сосчитать в уме. И вот тут древние люди проявили потрясающую изобретательность - они создали ручные приспособления для счета:


  • одним из первых был абак - его изобрели в Древнем Египте, он был также известен и в Вавилоне, затем его заимствовали греки и римляне. Его устройство в разное время и в разных местах менялось, но основная идея, заложенная в это приспособление, состояла в следующем: это была доска с продольными желобками, в которых размещались первоначально камешки, а в более поздние времена — особые жетоны. Так как у римлян камешек называли калькулюс (сравните с русским словом «галька») , то счет на абаке получил название калькуляция . И сейчас подсчет цен на товары называют калькуляцией, а человека, выполняющего этот подсчет,— калькулятором . На абаке крайний правый желобок служил для единиц, следующий — для десятков и т. д.
  • Похожее устройство счета применялось в Древнем Китае - суань-пан и Японии - соробан . Только не камушки перекладывались в желобках, а бусины передвигались на проволоках. С помощью китайского суань-пана можно даже было извлекать корни!
  • Древние майя также использовали приспособление, похожее на маленькую модель крепости - юпана - где за основу счета было взято число 40, а не 10 как в Европе.
  • счеты появились на Руси в 16-м веке и вполне эффективно применялись до конца 20-го. Они до сих пор очень удобны для слепых.
  • Удивительным приспособлением для астрономических расчетов является Антикитерский механизм . Считается, что изготовлен он был греческими учеными между 150 и 100 гг. до н.э. Реконструкция показала, что деревянный корпус размерами 33х18х10 см, содержал циферблаты, шестерни и стрелки. Он включал в себя 32 миниатюрные шестерни и моделировал движение Солнца и Луны относительно неподвижных звезд, мог также показывать положение всех 5-ти известных древним грекам планет - Меркурия, Венеры, Марса, Юпитера и Сатурна. Отражал также положение планет относительно звезд, вычислял даты солнечных и лунных затмений, а также даты Олимпийских игр.
  • Наиболее совершенное приспособление для ручного счета было изобретено только в начале 17-го века с развитием математики. Это логарифмическая линейка . Изобретателями первых логарифмических линеек являются англичане — математик и педагог Уильям Отред и учитель математики Ричард Деламейн. В 1632 была описана круговая логарифмическая линейка , а описание Отреда появилось в следующем году. Линейка Ричарда Деламейна представляла собой кольцо, внутри которого вращался круг. А в 1654 году англичанин Роберт Биссакер предложил конструкцию прямоугольной логарифмической линейки , общий вид которой сохранился до нашего времени... Интересно, что идею бегунка - неотъемлемого элемента современной логарифмической линейки - была высказана великим Исааком Ньютоном 24 июня 1675 года. Но физически бегунок появился лишь спустя 100 лет.


В том же 17-м веке ученые задумались над созданием механических счетных устройств. Над этой задачей работал еще Леонардо да Винчи - сохранились его чертежи, но наиболее удачной считается счетная машина Лейбница.

Счетные механические устройства.

Идея полностью механизировать сложные и тяжелые расчеты родилась в умах сразу нескольких ученых.

Одним из первых, кто задумался о механическом счетном устройстве был Леонардо да Винчи (XV в.) - он описал в одном из своих трактатов суммирующее устройство с зубчатыми колесами, которое выполняло сложение 13-разрядных чисел. К сожалению, идея Да Винчи не была реализована, хотя его чертежи были очень похожи на последующие модели механизмов.

Затем Вильгельм Шиккард (XVI в.) изобрел суммирующие «счетные часы», выполняющие сложение и умножение 6-разрядных чисел (машина построена, но сгорела). Реконструкция по чертежам показала, что модель вполне работоспособна.

Блез Паскаль в 1642 году построил машину, которую назвал «Паскалина». Он пытался облегчить работу своему отцу, Этьену Паскалю, который был крупным чиновником по налогам в министерстве Франции. В конструкции «Паскалины» использовались все те же зубчатые колеса, она выполняла сложение и вычитание 8-разрядных чисел.

Машину Блеза Паскаля усовершенствовал Лейбниц Готфрид Вильгельм - немецкий математик, физик и философ. Сконструированная им счетная машина выполняла не только сложение и вычитание, как это было у Б. Паскаля, но и умножение, деление, возведение в степень и извлечение квадратного и кубического корней. Свыше 40 лет Лейбниц посвятил усовершенствованию своего изобретения. Именно поэтому его можно считать идейным вдохновителем современной машинной математики. Эта машина и стала прообразом разнообразных арифмометров , которые стали появляться в 19-м веке, а их массовый выпуск был начат в конце 1890-х годов.

Однако ни машина Паскаля, ни счетные механизмы, построенные потом другими учеными и изобретателями, не получили широкого распространения. Слишком неточны они были, так как слаба была техническая база того времени. Понадобились столетия, чтобы научиться нарезать зубчатые колеса нужного профиля, заменить введение чисел с помощью поворота штифтов нажатием клавиш. С 1818 по 1846 год европейскими и русскими учеными создавались различные модели арифмометров, принцип действия которых заключался в перемещении планок или шестеренок. Лишь после того, как живший в России инженер Однер придумал в конце XIX века зубчатое колесо с изменяющимся в ходе работы числом зубцов, удалось построить удачную модель арифмометра.


Такая модель под названием «Феликс» выпускалась в Советском Союзе вплоть до конца шестидесятых годов нашего века. Многие важные расчеты во время войны делали еще на этих арифмометрах. Он выпускался с 1937 по 1970 годы на заводах счётных машин в Курске, в Пензе и в Москве. Он позволяет работать с операндами длиной до 9 знаков и получать ответ длиной до 13 знаков (до 8 для частного). В арифмометре использован очень простой и в то же время надёжный транспортный механизм каретки, отличавший его от всех западных аналогов.

Во второй половине 19-го века арифмометры стали настолько популярны, что стали неотъемлемой частью оснащения рабочего места бухгалтера, инженера, банковского клерка, товароведа. Но они были довольно громоздки, дороги, а брать их с собой в поездку и вовсе было затруднительно.

Впервые над миниатюризацией арифмометров задумались два изобретателя: учитель музыки Куммер (Россия, 1846г) и немецкий бизнесмен Курт Херцштарк (1938г). В результате появился первый механический калькулятор, названныйсчислителем Куммера . Калькулятор Куммера был плоским (5-7 мм), поскольку состоял лишь из подвижных зубчатых реек. Благодаря простоте, высокой надёжности и удобству в работе он приобрел огромную популярность и выпускался в разных странах более 100 лет на заводах России. Другая модель - Курта Херцштарка - появилась зимой 1938 года, однако массовое производство не началось - помешала Вторая мировая война. Он получил название «Курта».

Казалось бы, с появлением миниатюрных механических калькуляторов, к которым так стремились ученые почти 400 лет, эволюцию счетных устройств можно считать законченной. Да ничего подобного! Оказывается, ученым мало было механизировать все вычисления, они также задумались над тем, чтобы автоматически вводить данные и сохранять результаты. И тут пригодилось изобретение французского ткача, которое было сделано уже давно - в 1801г - перфокарта .


Автоматические счетные устройства.

Жозеф Мари Жаккарвпервые применил перфокарты для автоматизации ткацкого станка. Благодаря этому один станок мог производить самые разнообразные ткани и узоры, только поменяв исходный набор перфокарт. (Кстати, отсюда произошло название «жаккардова ткань» - ткань с вытканным шелковым узором). Это изобретение позволило на одном станке производить множество разных узоров на ткани.

Ученые 19-го века оценили эту идею по достоинству и использовали перфокарты для ввода данных в автоматические счетные устройства.


Изобретение перфокарты - деревянной дощечки с дырочками, расположенными по определенному принципу - позволило автоматизировать процесс ввода данных в механическое (а потом и не только механическое) счетное устройство. В это время появились и стали развиваться идеи сразу двух устройств - табулятора и компьютера (!).

В 80-х годах 19-го века американский инженер Герман Холлерит взял патент "на машину для переписи населения". Изобретение включало перфокарту и сортировочную машину. Перфокарта Холлерита оказалась настолько удачной, что без малейших изменений просуществовала до наших дней. В 1890 году Бюро переписи США использовало перфокарты и механизмы сортировки (табуляторы), чтобы обработать поток данных десятилетней переписи. Табуляторы нашли широкое применение и были предшественниками вычислительных машин нашего времени, они использовались для учета, статистических разработок, планово-экономических и частично инженерно-технических и других расчетов.

Если табуляторы были специализированы на сортировке данных, то «Разностная машина» англичанина Чарльза Бэббиджа, представленная в 1822 году, считывала информацию с перфокарт и затем выполняла вычисления. Но самым удивительным было то, что впервые была предложена идея механического компьютера - следующее изобретение Ч.Бэббиджа «Аналитическая машина». Революционность этой идеи состояла в том, что машина предназначалась для решения любых математических задач и предусматривала возможность ввода программы. Она включала в себя «мельницу» - механизм счета, «склад» - память, устройство ввода данных - с перфокарт. Перфокарты использовались также и для ввода программ.

Современники называли аналитическую машину одним из наиболее важных интеллектуальных достижений. Если бы Бэббидж преуспел в ее создании, это был бы первый механический компьютер. К сожалению, проект не был реализован из-за отсутствия финансовой поддержки, но английский ученый вошел в историю науки как первый изобретатель компьютера. В настоящее время в Англии в Британском музее находится реконструированная и вполне работоспособная модель Аналитической машины.

История калькуляторов

С появлением первых транзисторов и газоразрядных ламп эра механических калькуляторов закончилась. Первые транзисторные калькуляторы были еще очень громоздки, занимали довольно большую часть рабочего стола и уж точно не помещались в кармане. Тем не менее, их модернизировали почти каждые два года, добавляя им все новые и новые возможности.

Год выпуска Марка калькулятора
1954г фирма IBM продемонстрировала первый полностью транзисторный калькулятор.
1957 IBM начала выпуск первых коммерческих калькуляторов на транзисторах (IBM 608)
1963 г Начат выпуск первого массового калькулятора — ANITA MK VIII (Англия, на газоразрядных лампах, полная клавиатура для ввода числа + десять клавиш для ввода множителя).
1964г Начат выпуск первого массового полностью транзисторного калькулятора — FRIDEN 130 (США, 4 регистра, использовалась «обратная польская нотация»). Начат выпуск первого серийного отечественного калькулятора «Вега».
1964 г первый японский транзисторный калькулятор имел размеры пишущей машинки и весил 25 кг (фирма Sharp)
1965 г. компания Wang Laboratories выпустила калькулятор Wang LOCI-2, который мог вычислять логарифмы.
1969 г. Выпущен первый настольный программируемый калькулятор — HP 9100A (США, транзисторный)

Прорыв наметился в 1958 г. Изобретатель микрочипа (интегральная микросхема) - Джек Килби (США) обратил внимание на миниатюрные электронные калькуляторы как область применения его ранних изобретений. Вместе с двумя другими инженерами, работающими на компанию «Тексас Инструментс», в 1967 г. Килби создал самый первый ручной электронный калькулятор. Через три года калькулятор стал еще меньше, легче и дешевле, и поступил в продажу.

Год выпуска Марка калькулятора
1970 г Первый электронный карманный калькулятор «Покетроник»
1970 г. Появились калькуляторы, которые можно держать в руке Adler 81S (фирмы Sharp, вес калькулятора 128 граммов, без батареек и был оснащен VFD-дисплеем (вакуумный люминесцентный дисплей)). Первый отечественный калькулятор, выполненный с использованием интегральных микросхем — Искра 110.
1971 г. Фирма Bomwar выпустила первый карманный калькулятор — модель 901B размером 131х77х37 мм, c 4-мя операциями и 8-разрядным «красным» индикатором (на светодиодах); ($240)
1972 г. первый инженерный калькулятор — HP-35 фирмы Hewlett Packard
1974 г. первый отечественный микрокалькулятор — «Электроника Б3-04» (впервые использован термин «Микрокалькулятор»).
1975 г. калькулятор HP-25C, в котором программы и данные не пропадали при выключении питания.
1977 г. разработан первый советский карманный программируемый микрокалькулятор «Электроника Б3-21».
1979 г. Hewlett Packard выпустила первый калькулятор с алфавитно-цифровым индикатором — HP-41C. Он был программируемым, с возможностью подключения дополнительных модулей памяти, устройства чтения штрих-кодов, кассеты с магнитной лентой, флоппи-дисков, принтеров.
1980 г. появился Б3-34 и Б3-35
1985 г. появились советские программируемые МК-61 и МК-52.
1985 г. первый программируемый калькулятор с графическим дисплеем Casio FX-7000G.
2007 г. последний отечественный калькулятор МК-152.

До настоящего времени элементная база калькулятора осталась прежней - те же микрочипы, но со временем они стали не только еще более «микро», но и более мощными, более надежными. В дальнейшем развитие калькуляторов пошло по нескольким путям:

  1. появились новые элементы питания - пальчиковые и солнечные батареи
  2. жидкокристаллические дисплеи
  3. увеличение памяти
  4. возможность подключения к устройствам ввода/вывода
  5. возможность программировать вычисления
  6. профессиональная специализация - использование большого числа встроенных алгоритмов и функций

Современные программируемые калькуляторы обладают графическим экраном; встроенным языком программирования высокого уровня; возможностью связи с ПК (обычно для загрузки программ или данных) или с внешними устройствами (например, принтером). А для того, чтобы можно было использовать их в профессиональной деятельности, они могут рассчитывать значение различных сложных математических функций.

Судя по тому, как быстро все современные технологии находят применение в калькуляторах, похоже, что калькуляторы очень стремятся стать компьютерами. Современные карманные компьютеры (КПК) - это уже следующее поколение счетных (и не только счетных!) устройств.

А что ждет нас в ближайшие годы? Не получится ли так, что все эти устройства соединятся в единое универсальное и миниатюрное устройство - компьютер - коммуникатор - калькулятор? Скорее всего, так и будет …

А начиналось то все со счета на пальцах, камушков и бусин! …

В заключение хотелось бы сказать, что калькуляторы нам, конечно, необходимы - ни один профессиональный расчет не выполнить без них, но все-таки в школьные годы необходимо научиться считать «вручную». Хочется закончить свои мысли словами великого русского ученого М.В.Ломоносова «Математику уже затем изучать нужно, что она ум в порядок приводит».


Самое обсуждаемое
Айвар (икра) из баклажан и перца — рецепт с фото Сербское блюдо айвар Айвар (икра) из баклажан и перца — рецепт с фото Сербское блюдо айвар
Рецепт: Груша запеченная Рецепт: Груша запеченная "Эксклюзив для шаха" - вариации на тему рецепта из сериала "Кухня"
Рецепты маринада для запекания свинины в духовке и советы кулинаров Рецепты маринада для запекания свинины в духовке и советы кулинаров


top