Задания по теме графы. Решение задач с помощью графа. Области практического применения графов

Задания по теме графы. Решение задач с помощью графа. Области практического применения графов

1736 год, г.Кёнигсберг. Через город протекает река Прегеля. В городе - семь мостов, расположенных так, как показано на рисунке выше. С давних времен жители Кенигсберга бились над загадкой: можно ли пройти по всем мостам, пройдя по каждому только один раз? Эту задачу решали и теоретически, на бумаге, и на практике, на прогулках - проходя по этим самым мостам. Никому не удавалось доказать, что это неосуществимо, но и совершить такую «загадочную» прогулку по мостам никто не мог.

Разрешить проблему удалось знаменитому математику Леонарду Эйлеру. Причем, он решил не только эту конкретную задачу, но придумал общий метод решения подобных задач. При решении задачи о Кенигсбергских мостах Эйлер поступил следующим образом: он "сжал" сушу в точки, а мосты "вытянул" в линии. Такую фигуру, состоящую из точек и линий, связывающих эти точки, называют ГРАФОМ .

Граф – это совокупность непустого множества вершин и связей между вершинами. Кружки называются вершинами графа, линии со стрелками – дугами, без стрелок – ребрами.

Виды графов:

1. Ориентированный граф (кратко орграф ) - рёбрам которого присвоено направление.

2. Неориентированный граф - это граф , в котором нет направления линий.

3. Взвешенный граф – дуги или ребра имеют вес (дополнительная информация).



Решение задач с помощью графов:

Задача 1.

Решение: Обозначим ученых вершинами графа и проведем от каждой вершины линии к четырем другим вершинам. Получаем 10 линий, которые и будут считаться рукопожатиями.

Задача 2.

На пришкольном участке растут 8 деревьев: яблоня, тополь, береза, рябина, дуб, клен, лиственница и сосна. Рябина выше лиственницы, яблоня выше клена, дуб ниже березы, но выше сосны, сосна выше рябины, береза ниже тополя, а лиственница выше яблони. Расположите деревья от самого низкого к самому высокому.

Решение:

Вершины графа - это деревья, обозначенный первой буквой названия дерева. В данной задача два отношения: “быть ниже” и “быть выше”. Рассмотрим отношение “быть ниже” и проведем стрелки от более низкого дерева к более высокому. Если в задаче сказано, что рябина выше лиственницы, то стрелку ставим от лиственницы к рябине и т.д. Получаем граф, на котором видно, что самое низкое дерево – клен, затем идут яблоня, лиственница, рябина, сосна, дуб, береза и тополь.

Задача 3.

У Наташи есть 2 конверта: обычный и авиа, и 3 марки: прямоугольная, квадратная и треугольная. Сколькими способами Наташа может выбрать конверт и марку, чтобы отправить письмо?

Решение:

Ниже представлен разбор задач.


Муниципальное бюджетное образовательное учреждение

Октябрьская средняя общеобразовательная школа

Исследовательская работа по математике

«Теория графов при решении различных

видов задач»

Выполнил:
ученик 7 б класса
Макшун Алексей

Руководитель:

учитель математики

Мошково 2011 год

Введение.

Актуальность выбранной темы.

История возникновения теории графов.

Основная часть.

Основные понятия теории графов. Применение ее при решении логических задач.

Эйлеровы пути. Построение фигуры одним росчерком.

Плоские графы.

Заключение.

Литература.

1. Введение.

1. 1. Актуальность выбранной темы.

Однажды мне встретилась задача, описанная Льюсом Кэрроллом. «Три человека жили в трех домиках, неподалеку от них находились три колодца: один с водой, другой с маслом, а третий с повидлом, и ходили к ним по тропинкам, изображенным на рисунке. Однажды эти люди перессорились и решили провести тропинки от своих домов к колодцам так, чтобы эти тропинки не пересекались».

Я пытался решить эту задачу, но у меня нечего не получалось. После этого я обратился к своему учителю, и мне объяснили, что решить эту задачу я могу, только изучив теорию графов. Но прежде, чем найти ответ на свой вопрос, я увидел, что теория графов помогает упростить решение многих задач. Графы заинтересовали меня своей возможностью помогать в решении различных головоломок, математических и логических задач.

Цель:

Показать применение теории графов для решения различных видов задач.

Задачи:

· Изучить элементы теории графов для решения интересующих меня задач.

· Разобрать решение различных видов задач.

· Повысить математическую культуру.

1.2. История возникновения теории графов.

Датой рождения теории графов принято считать 1736 год, когда Леонард Эйлер решил задачу о кенигсбергских мостах. Рукава реки Прегель, на берегу которой расположен город Кенигсберг, образовывали два острова. В эту эпоху четыре образовавшихся участка суши (правый и левый берег и два острова) соединяло семь мостов так, как это показано на рисунке. Горожане, гуляя по городу, пытались составить маршрут, чтобы он проходил по каждому мосту ровно один раз. Это им не удавалось, а Эйлер доказал, что это принципиально невозможно. Термин «граф» впервые ввел в 1936 году венгерский математик Денеш Кениг. Широкое развитие теория графов получила с 50-х годах 20 века в связи со становлением кибернетики и развитием вычислительной техники.

Слово «граф» в математике означает картинку, где нарисовано несколько точек, некоторые из которых соединены линиями. С дворянским титулом «граф» их связывает общее происхождение от латинского слова «графио» - пишу.

Примерами графов могут служить схемы авиалиний , метро, дорог, электросхемы, чертежи многоугольников.

Схема Новосибирского метрополитена.

Использует графы и дворянство. Например, в генеалогическом дереве, вершины – члены рода, а связывающие их отрезки – отношения родственности.

Генеалогическое дерево.

С помощью графов часто упрощается решение задач, сформулированных в различных областях знаний: в автоматике, электронике, физике, химии. Помогают графы в решении математических и экономических задач .

2. Основная часть.

2.1. Основные понятия теории графов. Применение ее при решении логических задач.

В математике определение графа дается так:

Графом называется конечное множество точек, некоторые из которых соединены линиями. Точки называются вершинами графа, а соединяющие линии – рёбрами.


Схема графа, состоящая из «изолированных» вершин, называется нулевым графом. (рис.2)

Графы, в которых не построены все возможные ребра, называются неполными графами. (рис.3)

Графы, в которых построены все возможные ребра, называются полными графами. (рис.4)

Количество рёбер, выходящих из вершины графа, называется степенью вершины . Вершина графа, имеющая нечётную степень, называется нечетной , а чётную степень – чётной .

Если степени всех вершин графа равны, то граф называется однородным . Таким образом, любой полный граф - однородный.

На рисунке 5 изображен граф с пятью вершинами. Степень вершины А обозначим Ст. А. На рисунке: Ст. А = 1, Ст. Б = 2, Ст. В = 3, Ст. Г= 2, Ст. Д= 0.

Задача №1.

Аркадий, Борис. Владимир, Григорий и Дмитрий при встрече обменялись рукопожатиями (каждый пожал руку каждому по одному разу). Сколько всего рукопожатий было сделано?

Решение:

Пусть каждому из пяти молодых людей соответствует определенная точка на плоскости, названная первой буквой его имени, а производимому рукопожатию - отрезок или часть кривой, соединяющая конкретные точки - имена.

Задача №2.

В одном дворе живут четыре друга. Вадим и шофер старше Сергея, Николай и слесарь занимаются боксом, электрик-младший из друзей.

По вечерам Андрей и токарь играют в домино против Сергея и электрика.

Определите профессию каждого из друзей.

Решение.

Составим граф из 4 друзей и 4 профессий. Пунктирными линиями отметим невозможные связи, а сплошной - соответствие имени и профессии. Если от каждой вершины выходить 3 пунктирных линии, то четвертая линия должна быть сплошной.

В С Н А


Ш С Т Э

Задача №3.

В небольшом городке живут пять друзей: Иванов, Петренко, Сидорчук, Гришин и Капустин. Профессии у них разные: один из них маляр, другой - мельник, третий- плотник, четвертый-почтальон, а пятый - парикмахер.

Петренко и Гришин никогда не держали в руках малярной кисти.

Иванов и Гришин собираются посетить мельницу, на которой работает их товарищ. Петренко и Капустин живут в одном доме с почтальоном.

Сидорчук был недавно в ЗАГСе одним из свидетелей, когда Петренко и дочь парикмахера сочетались законным браком. Иванов и Петренко каждое воскресенье играют в городки с плотником и маляром.

Гришин и Капустин по субботам обязательно встречаются в парикмахерской, где работает их друг. Почтальон предпочитает бриться сам. Кто есть кто?

Решение.

Иванов Петренко Сидорчук Гришин Капустин


маляр мельник плотник почтальон парикмахер

2.2. Эйлеровы пути. Построение фигуры одним росчерком .

Сформулируем некоторые закономерности, присущие определенным графам.

Закономерность 1.

Степени вершин полного графа одинаковы, и каждая из них на 1 меньше числа вершин этого графа.

Доказательство:

Эта закономерность очевидна уже после рассмотрения любого полного графа. Каждая вершина соединена ребром с каждой вершиной, кроме самой себя, т. е. из каждой вершины графа, имеющего n вершин, исходит n-1 ребро, что и требовалось доказать.

Закономерность 2.

Сумма степеней вершин графа число четное, равное удвоенному числу ребер графа.

Эта закономерность справедлива не только для полного, но и для любого графа.

Доказательство:

Действительно, каждое ребро графа связывает две вершины. Значит, если будем складывать число степеней всех вершин графа, то получим удвоенное число ребер 2R (R - число ребер графа), т. к. каждое ребро было подсчитано дважды, что и требовалось доказать.

Число нечетных вершин любого графа четно. Доказательство:

Рассмотрим произвольный граф Г. Пусть в этом графе число вершин, степень которых 1, равна К1; число вершин, степень которых 2, равно K2; ...; число вершин, степень которых n, равно Кn. Тогда сумму степеней вершин этого графа можно записать как
K1 + 2К2 + ЗК3 + ...+ nКn.
С другой стороны: если число ребер графа R, то из закономерности 2 известно, что сумма степеней всех вершин графа равна 2R. Тогда можно записать равенство
K1 + 2К2 + ЗК3 + ... + nКn = 2R.
Выделим в левой части равенства сумму, равную числу нечетных вершин графа (К1 + К3 + ...):
K1 + 2К2 + ЗК3 + 4К4 + 5К5 + ... + nКn = 2R,
(К1 + К3 + К5 +...) + (2K2 + 2K3 +4K4 + 4К5 + ...)=2R
Вторая скобка - четное число как сумма четных чисел. Полученная сумма (2R) четное число. Отсюда (К1 + К3 + К5 +...)-четное число.

Что и требовалось доказать.

Задача №4.

Можно ли 25 приборов соединить проводами так, чтобы каждый прибор был соединен ровно с пятью другими?

Решение.

Невозможно. В таком графе было бы нечетное число вершин нечетной степени.

Заметим, что если полный граф имеет n вершин, то количество ребер будет равно n(n-1)/2. Действительно, количество ребер в полном графе с n вершинами определяется как число неупорядоченных пар, составленных из всех n точек-ребер графа, т. е. как число сочетаний из n элементов по 2:
Граф, не являющийся полным, можно дополнить до полного с теми же вершинами, добавив недостающие ребра. Так, например, на рисунке 3 изображен неполный граф с пятью вершинами. На рисунке 4 ребра превращающие граф в полный граф изображены другим цветом, совокупность вершин графа с этими ребрами называется дополнением графа.

Задача №5.

В первенстве класса по настольному теннису 6 участников: Андрей, Борис Виктор, Галина, Дмитрий и Елена. Первенство проводят по круговой системе – каждый из участников играет с каждым из остальных один раз. К настоящему моменту некоторые игры уже проведены: Андрей сыграл с Борисом, Галиной, Еленой; Борис – с Андреем, Галиной; Виктор – с Галиной, Дмитрием, Еленой; Галина – с Андреем, Виктором и Борисом. Сколько игр проведено к настоящему моменту и сколько еще осталось?

Решение:

Построим граф. Сыгранные игры отметим синими линиями, красными дополним до полного графа. Получим, что сыграно 7 игр, а осталось – 8. Можно проверить: в графе 6 вершин тогда всего ребер 6*5/2=15 (7+8).

Эйлеровы графы.

Эйлеров путь - путь в графе, проходящий через каждое ребро ровно один раз.

Граф, который можно нарисовать, не отрывая карандаша от бумаги, называется эйлеровым. (рис.6) Такими графы названы в честь учёного Леонарда Эйлера.

рис.6 (эйлеровы графы)

Закономерность 3 (вытекает из рассмотренной нами теоремы).
Невозможно начертить граф с нечетным числом нечетных вершин.
Закономерность 4.

Если все вершины графа четные, то можно не отрывая карандаш от бумаги («одним росчерком»), проводя по каждому ребру только один раз, начертить этот граф. Движение можно начать с любой вершины и закончить его в той же вершине.
Закономерность 5.

Граф, имеющий всего две нечетные вершины, можно начертить, не отрывая карандаш от бумаги, при этом движение нужно начать с одной из этих нечетных вершин и закончить во второй из них.
Закономерность 6.

Граф, имеющий более двух нечетных вершин, невозможно начертить «одним росчерком».

Фигура (граф), которую можно начертить, не отрывая карандаш от бумаги, называется уникурсальной.

Задача № 6 о кенигсбергских мостах.

Рукава реки Прегель, на берегу которой расположен город Кенигсберг, образовывали два острова. В эту эпоху четыре образовавшихся участка суши (правый и левый берег и два острова) соединяло семь мостов так, как это показано на рисунке. Горожане, гуляя по городу, пытались составить маршрут, чтобы он проходил по каждому мосту ровно один раз.

Решение.

Эту задачу решил Леонард Эйлер. Он построил следующий граф и получил, что все четыре вершины нечетные, то есть нельзя пройти по всем мостам один раз и закончить путь там, где он был начат.

Задача № 7.

Четыре острова соединены между собой и с берегами реки 14 мостами так, как это показано на рисунке. Можно ли за одну прогулку обойти все эти мосты, побывав на каждом из них один раз?

Решение. Построим граф. Имеются две нечетные вершины В и С. Следовательно за одну прогулку можно обойти все мосты, побывав на каждом из них один раз. При этом прогулку надо начинать с острова В и заканчивать на острове С или наоборот.

Задача №8.

Можно ли нарисовать графы, изображенные на рисунках, не отрывая карандаш от бумаги и проводя каждое ребро ровно один раз?

Решение:

1) Можно, т. к. только 2 нечетные вершины.

2) Нельзя, т. к. 4 нечетные вершины.

Задача №9.

Говорят, что Магомет вместо подписи (он был неграмотен) описывал одним росчерком состоящий из двух рогов луны знак, представленный на рисунке. Возможно ли это?

Решение. Да, потому что в данном случае мы имеем дело с вершинами четного порядка.

Задача №10. Муха в банке.

Муха забралась в банку из-под сахара. Банка имеет форму куба. Сможет ли муха последовательно обойти все 12 ребер куба, не проходя дважды по одному ребру? Подпрыгивать и перелетать с места на место не разрешается.

Решение.

Ребра и вершины образуют граф, все 8 вершин которого имеют 3 степень, и, следовательно, требуемый обход невозможен.

Задача № 11.

Попробуйте построить данные фигуры одним росчерком.

2.3. Плоские графы.

Интересующая меня задача «о трёх домах и трёх колодцах» подтолкнула развитие теории графов. Граф, который можно нарисовать на плоскости так, чтобы его рёбра не пересекались нигде, кроме вершин, называются плоским или планарным.

Эйлер доказал теорему, которая даёт отрицательный ответ на вопрос этой задачи.

Теорема Эйлера.

Если граф, имеющий n вершин и m ребер,- плоский, тогда справедливо равенство n-m+p=2, где p количество непересекающихся частей (их называют гранями), на которые этот граф разбивает плоскость.

Доказательство.

Граф «три дома и три колодца» имеет шесть вершин и девять рёбер. Если он плоский, количество граней p должно быть равно p = n – m + 2 = 9 - 6 + 2 = 5. Но так как никакие два дома или два колодца не соединены между собой, каждая грань имеет, по меньшей мере, четыре ребра. Получим неравенство 2n ≥ 4p(каждое ребро считается два раза), откуда получаем ложное неравенство 18 ≥ 20. Аналогично доказывается, что полный пятивершинный граф также не может быть плоским.

Теорема Понтрягина – Куратовского.

Граф является плоским тогда и только тогда, когда он не содержит графа с шестью вершинами типа «домики-колодцы» и полного графа с пятью вершинами.

3. Заключение.

Чтобы найти ответ на интересующую меня задачу, мне пришлось познакомиться с новым разделом математики «Теорией графов», который не изучается в школьном курсе, но облегчает решение многих задач, я узнал много нового, понял, что математика интересна, но и трудна.

Графы – это замечательные математические объекты, с помощью, которых можно решать математические, логические и экономические задачи. Решение многих математических задач упрощается, если удается использовать графы. Представление данных в виде графа придает им наглядность и простоту. Многие математические доказательства также упрощаются, приобретают убедительность, если пользоваться графами. Также можно решать различные головоломки и упрощать условия задач по физике, химии, электронике, автоматике. Графы используются при составлении карт и генеалогических древ.

4. Литература.

3. Игнатьев смекалка. - М.: «Омега», 1994г.

5. "Математика" - приложение к газете "Первое сентября" №7,2005г

6. Энциклопедический словарь юного математика / Сост. А.П. Савин.- М.: Педагогика, 1989.

Так же использовались данные со следующих сайтов:

Энциклопедический словарь юного математика / Сост. А.П. Савин.- М.: Педагогика, 1989.

Башмаков в кармане «Кенгуру». - М.: Дрофа, 2010г.

Http:infometronovosibirsk_metro_map. htm

Http://www. /index. php? cnt=4

Физико-математический журнал «Квант», №6, 1994г.

Подготовка школьников к олимпиадам по математике. 5-6 классы./сост. – М. : «Глобус», 2009 г.

Макеева работа по математике. – Саратов: «Лицей», 2002 г.

"Математика"- приложение к газете "Первое сентября" №7,2005г

Физико-математический журнал «Квант», №6, 1994г.

Башмаков в кармане «Кенгуру». - М.: Дрофа, 2010г.

Физико-математический журнал «Квант», №6, 1994г.

Подготовка школьников к олимпиадам по математике. 5-6 классы./сост. – М. : «Глобус», 2009 г.

Физико-математический журнал «Квант», №6, 1994г.

Башмаков в кармане «Кенгуру». - М.: Дрофа, 2010г.

Макеева работа по математике. – Саратов: «Лицей», 2002 г.

Макеева работа по математике. – Саратов: «Лицей», 2002 г.

Игнатьев смекалка. - М.: «Омега», 1994г.

Макеева работа по математике. – Саратов: «Лицей», 2002 г.

Подготовка школьников к олимпиадам по математике. 5-6 классы./сост. – М. : «Глобус», 2009 г.

Башмаков в кармане «Кенгуру». - М.: Дрофа, 2010г.

«Ещё один увлекательный способ решения задач» (метод графов) Автор: Пыркова Мария, обучающаяся 7 класса школы-интерната № 9 ОАО РЖД г. Кинель Самарской области Руководитель: Степанова Ольга Алексеевна, учитель математики высшей категории. г. Кинель, 2015

Актуальность решающая роль задач в обучении математике; введение в школьный курс разделов «Комбинаторика», «Логика», «Вероятность»; отыскание способов решения нестандартных задач.

Цель исследования: изучить понятие «графа» и его элементов; применять при решении различных типов задач.

Объект исследования: граф ПРЕДМЕТ ИССЛЕДОВАНИЯ история математики, виды задач, способы решения задач.

Основные методы исследования: исследовательский; использование на практике. компьютерная обработка данных; классификация и анализ собранного материала; математический отбор.

Математическое понятие «граф». В математике графом называется конечное множество точек, некоторые из которых соединены линиями. Точки называются вершинами графа, а соединяющие линии – рёбрами. нулевой граф неполный граф. полный граф.

Сфера применения графов

Практическая часть

Алгоритм составления графа Обсудить о каком процессе идет речь? Какие величины характеризуют данный процесс? Каким соотношением связаны эти величины? Сколько процессов описывается в задаче? Есть ли связь между элементами? Если ответы на эти вопросы записывать схематически, то эта схема и будет сетевым графом.

«Сколько у тебя в стаде голов скота?» Н а вопрос путника: - пастух ответил: «Если бы к моему стаду добавить одну корову, то третью часть всего стада составляли бы овцы и козы. Если бы к имеющимся овцам и козам добавить одну овцу, то седьмую часть их составляли бы козы, в которых третья часть есть лишь один маленький козленок». Сколько голов скота было в стаде? Решение: Составим граф по условию задачи. Решаем обратно. Ответ: в стаде 59 голов скота.

Задачи на движение. Машина прошла первый участок пути за 3 часа, а второй участок - за 2 часа. Длина обоих участков вместе 267 км. С какой скоростью шла машина на каждом участке, если скорость на втором участке была на 8,5 км/ч больше, чем на первом? Построим сетевой граф. Пусть V 1 = х км/ч, тогда V 2 = х+ 8,5 км/ч, S 1 = 3х км, S 2 = 2(х+8.5)км Составим уравнение: 3х + 2(х+8,5) = 267 Ответ: 50 км/ч

Комбинаторные задачи. Задача «Что выше?» На пришкольном участке растут 8 деревьев: яблоня, тополь, береза, рябина, дуб, клен, лиственница и сосна. Рябина выше лиственницы, яблоня выше клена, дуб ниже березы, но выше сосны, сосна выше рябины, береза ниже тополя, а лиственница выше яблони. Расположите деревья от самого низкого к самому высокому. Ответ: клен самое низкое дерево.

Опрос одноклассников

Заключение «Рано или поздно всякая правильная математическая идея находит применение в том или ином деле.» (А.Н. Крылов) Графы – это замечательные математические объекты, с помощью которых можно решать математические, экономические и логические задачи. Графы позволяют наглядно представить условие задачи, держать в памяти многочисленные факты, а значить, значительно упростить её решение. Вызывает интерес к изучению математики и получению хороших результатов.

Список литературы Энциклопедический словарь юного математика. \Сост. А.П.Савин.- М.: Педагогика, 1989 Квант №6 1994г. М. Гарднер «Математические досуги» М.: Мир, 1972 Берж К. Теория графов и ее применение. ИЛ, 1962. Математика, учебник для 5 кл. / Н.Я.Виленкин, В.И.Жохов и др.-М:Просвещение, 2011 Математика, учебник для 6 кл. / Н.Я.Виленкин, В.И.Жохов и др.-М:Просвещение, 2011 Алгебра: учебник для 7 кл. / Ю.Н.Макарычев и др., под редакцией С.А.Теляковского.-М.:Просвещение,2011 Элективные курсы «Решение задач с помощью графов»/ авт.-сост.Л.Н.Харламова. - Волгоград: Учитель,2007 .

Спасибо за внимание!

Перед тем как начать изучение непосредственно алгоритмов, необходимо обладать базовыми знаниями касательно самих графов, понимать, как они представляются в компьютере. Здесь не будут подробно описаны все аспекты теории графов (этого и не требуется), но только те, незнание которых заметно усложнит усвоение данной области программирования.

Несколько примеров дадут немного поверхностного представления о графе. Так типичным графом является схема метро или какой-либо другой маршрут. В частности программисту знакома компьютерная сеть, также являющаяся графом. Общее здесь это наличие точек, соединенных линиями. Так в компьютерной сети точки – это отдельные серверы, а линии – различные виды электрических сигналов. В метрополитене первое – станции, второе – туннели, проложенные между ними. В теории графов точки именуется вершинами (узлами ), а линии – ребрами (дугами ). Таким образом, граф – это совокупность вершин, соединённых ребрами.

Математика оперирует не содержанием вещей, а их структурой, абстрагируя ее из всего того, что дано как целое. Пользуясь именно этим приемом, мы можем заключать о каких-либо объектах как о графах. А поскольку теория графов это часть математики, то для нее нет абсолютно никакого значения, что в принципе представляет собой объект; важно лишь то, является ли он графом, т. е. обладает ли обязательными для графов свойствами. Поэтому, прежде чем привести примеры, мы выделяем в рассматриваемом объекте лишь то, что как нам кажется, позволит показать аналогию, отыскиваем общее.

Вернемся к компьютерной сети. Она обладает определенной топологией, и может быть условно изображена в виде некоторого числа компьютеров и путей их соединяющих. На рисунке ниже в качестве примера показана полносвязная топология.

Это по сути граф. Пять компьютеров являются вершинами, а соединения (пути передачи сигналов) между ними – ребрами. Заменив компьютеры вершинами, мы получим математический объект – граф, который имеет 10 ребер и 5 вершин. Пронумеровать вершины можно произвольным образом, а не обязательно так, как это сделано на рисунке. Стоит отметить, что в данном примере не используется ни одной петли, то есть такого ребра, которое выходит из вершины и сразу же входит в нее, но петли могут встречаться в задачах.

Вот некоторые важные обозначения, используемые в теории графов:

  • G=(V, E), здесь G – граф, V – его вершины, а E – ребра;
  • |V| – порядок (число вершин);
  • |E| – размер графа (число рёбер).

В нашем случае (рис. 1) |V|=5, |E|=10;

Когда из любой вершины доступна любая другая вершина, то такой граф называется неориентированным связным графом (рис. 1). Если же граф связный, но это условие не выполняется, тогда такой граф называется ориентированным или орграфом (рис. 2).

В ориентированных и неориентированных графах имеется понятие степени вершины. Степень вершины – это количество ребер, соединяющих ее с другими вершинами. Сумма всех степеней графа равна удвоенному количеству всех его ребер. Для рисунка 2 сумма всех степеней равна 20.

В орграфе, в отличие от неориентированного графа, имеется возможность двигаться из вершины h в вершину s без промежуточных вершин, лишь тогда когда ребро выходит из h и входит в s, но не наоборот.

Ориентированные графы имеют следующую форму записи:

G=(V, A), где V – вершины, A – направленные ребра.

Третий тип графов – смешанные графы (рис. 3). Они имеют как направленные ребра, так и ненаправленные. Формально смешанный граф записывается так: G=(V, E, A), где каждая из букв в скобках обозначает тоже, что ей приписывалось ранее.

В графе на рисунке 3 одни дуги направленные [(e, a), (e, c), (a, b), (c, a), (d, b)], другие – ненаправленные [(e, d), (e, b), (d, c)…].

Два или более графов на первый взгляд могут показаться разными по своей структуре, что возникает вследствие различного их изображения. Но это не всегда так. Возьмем два графа (рис. 4).

Они эквивалентны друг другу, ведь не изменяя структуру одного графа можно построить другой. Такие графы называются изоморфными , т. е. обладающими тем свойством, что какая-либо вершина с определенным числом ребер в одном графе имеет тождественную вершину в другом. На рисунке 4 изображены два изоморфных графа.

Когда каждому ребру графа поставлено в соответствие некоторое значение, называемое весом ребра, тогда такой граф взвешенный . В разных задачах в качестве веса могут выступать различные виды измерений, например длины, цены маршруты и т. п. В графическом представлении графа весовые значения указываются, как правило, рядом с ребрами.

В любом из рассмотренных нами графов имеется возможность выделить путь и, причем не один. Путь – это последовательность вершин, каждая из которых соединена с последующей посредством ребра. Если первая и последняя вершины совпадают, то такой путь называется циклом. Длина пути определяется количеством составляющих его ребер. Например, на рисунке 4.а путем служит последовательность [(e), (a), (b), (c)]. Этот путь является подграфом, так как к нему применимо определение последнего, а именно: граф G’=(V’, E’) является подграфом графа G=(V, E), только тогда когда V’ и E’ принадлежат V, E.

МУНИЦИПАЛЬНОЕ АВТОНОМНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 2

Подготовил

Легкоконец Владислав, ученик 10А класса

Практическое применение Теории Графов

Руководитель

Л.И. Носкова, учитель математики

ст.Брюховецкая

2011 г.

1.Введение………………………………………………………………………….………….3

2.История возникновения теории графов………………………………………….………..4

3.Основные определения и теоремы теории графов……………………………….………6

4.Задачи,решаемые при помощи графов……………………………..……………………..8

4.1 Знаменитые задачи………………………………….………………………...8

4.2 Несколько интересных задач………………………………….……………..9

5.Применение графов в различных областях жизни людей……………………………...11

6.Решение задач……………………………………………………………………………...12

7. Заключение………………….…………………………………………………………….13

8. Список литературы………….……………………………………………………………14

9.Приложение…………………………………………………………………….…………15

Введение

Родившись при решении головоломок и занимательных игр, теория графов стала в настоящее время простым, доступным и мощным средством решения вопросов, относящихся к широкому кругу проблем. Графы буквально вездесущи. В виде графов можно, например, интерпретировать схемы дорог и электрические цепи, географические карты и молекулы химических соединений, связи между людьми и группами людей. За последние четыре десятилетия теория графов превратилась в один из наиболее бурно развивающихся разделов математики. Это вызвано запросами стремительно расширяющейся области приложений. Применяется при проектировании интегральных схем и схем управления, при исследовании автоматов, логических цепей, блок- схем программ, в экономике и статистике, химии и биологии, в теории расписаний. Поэтому актуальность темы обусловлена с одной стороны популярностью графов и связанных с ними методов исследований, а с другой, не разработанная, целостная система ее реализации.

Решение многих жизненных задач требует длинных вычислений, а иногда и эти вычисления не приносят успеха. В этом и состоит проблема исследования . Возникает вопрос: нельзя ли для их решения найти простое, рациональное, короткое и изящное решение. Упрощается ли решение задач, если использовать графы? Это определило тему моего исследования : «Практическое применение теории графов»

Целью исследования было с помощью графов научиться быстро решать практические задачи.

Гипотеза исследования. Метод графов очень важен и широко применяется в различных областях науки и жизнедеятельности человека.

Задачи исследования:

1.Изучить литературу и ресурсы сети Интернет по данной проблеме.

2.Проверить эффективность метода графов при решении практических задач.

3. Сделать вывод.

Практическая значимость исследования заключается в том, что результаты несомненно вызовут интерес у многих людей. Разве не пытался кто-то из вас построить генеалогическое дерево своей семьи? А как это сделать грамотно? Руководителю транспортного предприятия наверняка приходится решать проблему более выгодного использования транспорта при перевозке грузов с места назначения в несколько населенных пунктов. Каждый школьник сталкивался с логическими задачами на переливание. Оказывается они решаются при помощи графов легко.

В работе используются следующие методы: наблюдение, поиск, отбор, анализ.

История возникновения теории графов

Родоначальником теории графов принято считать математика Леонарда Эйлера (1707-1783). Историю возникновения этой теории можно проследить по переписке великого ученого. Вот перевод латинского текста, который взят из письма Эйлера к итальянскому математику и инженеру Маринони, отправленного из Петербурга 13 марта 1736 года.

"Некогда мне была предложена задача об острове, расположенном в городе Кенигсберге и окруженном рекой, через которую перекинуто семь мостов.

[Приложение рис.1] Спрашивается, может ли кто-нибудь непрерывно обойти их, проходя только однажды через каждый мост. И тут же мне было сообщено, что никто еще до сих пор не мог это проделать, но никто и не доказал, что это невозможно. Вопрос этот, хотя и банальный, показался мне, однако, достойным внимания тем, что для его решения недостаточны ни геометрия, ни алгебра, ни комбинаторное искусство. После долгих размышлений я нашел легкое правило, основанное на вполне убедительном доказательстве, с помощью которого можно во всех задачах такого рода тотчас же определить, может ли быть совершен такой обход через какое угодно число и как угодно расположенных мостов или не может. Кенигсбергские же мосты расположены так, что их можно представить на следующем рисунке [Приложение рис.2] , на котором A обозначает остров, а B ,C иD – части континента, отделенные друг от друга рукавами реки

По поводу обнаруженного им способа решать задачи подобного рода Эйлер писал:

"Это решение по своему характеру, по-видимому, имеет мало отношения к математике, и мне непонятно, почему следует скорее от математика ожидать этого решения, нежели от какого-нибудь другого человека, ибо это решение подкрепляется одним только рассуждением, и нет необходимости привлекать для нахождения этого решения какие-либо законы, свойственные математике. Итак, я не знаю, каким образом получается, что вопросы, имеющие совсем мало отношения к математике, скорее разрешается математиками, чем другими".

Так можно ли обойти Кенигсбергские мосты, проходя только один раз через каждый из этих мостов? Чтобы найти ответ, продолжим письмо Эйлера к Маринони:

"Вопрос состоит в том, чтобы определить, можно ли обойти все эти семь мостов, проходя через каждый только однажды, или нельзя. Мое правило приводит к следующему решению этого вопроса. Прежде всего, нужно смотреть, сколько есть участков, разделенных водой, – таких, у которых нет другого перехода с одного на другой, кроме как через мост. В данном примере таких участков четыре – A , B , C , D . Далее нужно различать, является ли число мостов, ведущих к этим отдельным участкам, четным или нечетным. Так, в нашем случае к участку A ведут пять мостов, а к остальным – по три моста, т. е. Число мостов, ведущих к отдельным участкам, нечетно, а этого одного уже достаточно для решения задачи. Когда это определено, применяем следующее правило: если бы число мостов, ведущих к каждому отдельному участку, было четным, то тогда обход, о котором идет речь, был бы возможен, и в то же время можно было бы начать этот обход с любого участка. Если же из этих чисел два были бы нечетные, ибо только одно быть нечетным не может, то и тогда мог бы совершиться переход, как это предписано, но только начало обхода непременно должно быть взято от одного из тех двух участков, к которым ведет нечетное число мостов. Если бы, наконец, было больше двух участков, к которым ведет нечетное число мостов, то тогда такое движение вообще невозможно… если можно было привести здесь другие, более серьезные задачи, этот метод мог бы принести еще большую пользу и им не следовало бы пренебрегать".

Основные определения и теоремы теории графов

Теория графов – дисциплина математическая, созданная усилиями математиков, поэтому ее изложение включает в себя и необходимые строгие определения. Итак, приступим к организованному введению основных понятий этой теории.

    Определение 1. Графомназывается совокупность конечного числа точек, называемых вершинами графа, и попарно соединяющих некоторые из этих вершин линий, называемых ребрамиили дугами графа.

Это определение можно сформулировать иначе: графомназывается непустое множество точек (вершин) и отрезков (ребер), оба конца которых принадлежат заданному множеству точек

В дальнейшем вершины графа мы будем обозначать латинскими буквами A , B , C , D . Иногда граф в целом будем обозначать одной заглавной буквой.

Определение 2. Вершины графа, которые не принадлежат ни одному ребру, называются изолированными.

Определение 3. Граф, состоящий только из изолированных вершин, называется нуль- графом.

Обозначение: O "– граф с вершинами, не имеющий ребер

Определение 4. Граф, в котором каждая пара вершин соединена ребром, называется полным.

Обозначение: U "граф, состоящий из n вершин и ребер, соединяющих всевозможные пары этих вершин. Такой граф можно представить как n –угольник, в котором проведены все диагонали

Определение 5. Степеньювершиныназывается число ребер, которым принадлежит вершина.

Определение 6. Граф, степени всех k вершин которого одинаковы, называется однороднымграфомстепениk .

Определение 7. Дополнениемданногографаназывается граф, состоящий из всех ребер и их концов, которые необходимо добавить к исходному графу, чтобы получить полный граф.

Определение 8. Граф, который можно представить на плоскости в таком виде, когда его ребра пересекаются только в вершинах, называется плоским.

Определение 9. Многоугольник плоского графа, не содержащий внутри себя никаких вершин или ребер графа, называют его гранью.

Понятия плоского графа и грани графа применяется при решении задач на "правильное" раскрашивание различных карт.

Определение 10. Путемот A доX называется последовательность ребер, ведущая от A к X , такая, что каждые два соседних ребра имеют общую вершину, и никакое ребро не встречается более одного раза.

Определение 11. Цикломназывается путь, в котором совпадают начальная и конечная точка.

Определение 12. Простым цикломназывается цикл, не проходящий ни через одну из вершин графа более одного раза.

Определение 13. Длиной пути, проложенного на цикле, называется число ребер этого пути.

Определение 14. Две вершины A и B в графе называются связными(несвязными), если в нем существует (не существует) путь, ведущий из A в B .

Определение 15. Граф называется связным, если каждые две его вершины связны; если же в графе найдется хотя бы одна пара несвязных вершин, то граф называется несвязным.

Определение 16. Деревомназывается связный граф, не содержащий циклов.

Трехмерной моделью графа-дерева служит, например, настоящее дерево с его замысловато разветвленной кроной; река и ее притоки также образуют дерево, но уже плоское – на поверхности земли.

Определение 17. Несвязный граф, состоящий исключительно из деревьев, называется лесом.

Определение 18. Дерево, все n вершин которого имеют номера от 1 до n , называют деревом с перенумерованными вершинами.

Итак, мы рассмотрели основные определения теории графов, без которых было бы невозможно доказательство теорем, а, следовательно и решение задач.

Задачи решаемые при помощи графов

Знаменитые задачи

Задача коммивояжера

Задача коммивояжера является одной из знаменитых задач теории комбинаторики. Она была поставлена в 1934 году, и об неё обламывали зубы лучшие математики.

Постановка задачи следующая.
Коммивояжер (бродячий торговец) должен выйти из первого города, посетить по разу в неизвестном порядке города 2,1,3..n и вернуться в первый город. Расстояния между городами известны. В каком порядке следует обходить города, чтобы замкнутый путь (тур) коммивояжера был кратчайшим?

Метод решения задачи коммивояжера

Жадный алгоритм “иди в ближайший (в который еще не входил) город”.
“Жадным” этот алгоритм назван потому, что на последних шагах приходится жестоко расплачиваться за жадность.
Рассмотрим для примера сеть на рисунке [приложение рис.3] , представляющую узкий ромб. Пусть коммивояжер стартует из города 1. Алгоритм “иди в ближайший город” выведет его в город 2, затем 3, затем 4; на последнем шаге придется платить за жадность, возвращаясь по длинной диагонали ромба. В результате получится не кратчайший, а длиннейший тур.

Задача о Кенигсбергских мостах.

Задача формулируется следующим образом.
Город Кенигсберг расположен на берегах реки Прегель и двух островах. Различные части города были соединены семью мостами. По воскресеньям горожане совершали прогулки по городу. Вопрос: можно ли совершить прогулку таким образом, чтобы, выйдя из дома, вернуться обратно, пройдя в точности один раз по каждому мосту.
Мосты через реку Прегель расположены как на рисунке
[приложение Рис.1].

Рассмотрим граф, соответствующий схеме мостов [приложение рис.2].

Чтобы ответить на вопрос задачи, достаточно выяснить, является ли граф эйлеровым. (Хотя бы из одной вершины должно выходить четное число мостов). Нельзя, прогуливаясь по городу, пройти по одному разу все мосты и вернуться обратно.

Несколько интересных задач

1. "Маршруты".

Задача 1

Как вы помните, охотник за мертвыми душами Чичиков побывал у известных помещиков по одному разу у каждого. Он посещал их в следующем порядке: Манилова, Коробочку, Ноздрева, Собакевича, Плюшкина, Тентетникова, генерала Бетрищева, Петуха, Констанжолго, полковника Кошкарева. Найдена схема, на которой Чичиков набросал взаимное расположение имений и проселочных дорог, соединяющих их. Установите, какое имение кому принадлежит, если ни одной из дорог Чичиков не проезжал более одного раза [приложение рис.4].

Решение :

По схеме дорог видно, что путешествие Чичиков начал с имения Е, а окончил имением О. Замечаем, что в имения В и С ведут только две дороги, поэтому по этим дорогам Чичиков должен был проехать. Отметим их жирной линией. Определены участки маршрута, проходящие через А: АС и АВ. По дорогам АЕ, АК и АМ Чичиков не ездил. Перечеркнем их. Отметим жирной линией ЕD ; перечеркнем DK . Перечеркнем МО и МН; отметим жирной линией MF ; перечеркнем FO ; отметим жирной линией FH , НК и КО. Найдем единственно возможный при данном условии маршрут. И получаем: имение Е – принадлежит Манилову, D - Коробочке, С – Ноздреву, А – Собакевичу, В – Плюшкину, М – Тентетникову, F - Бетрищеву, Н – Петуху, К – Констанжолго, О – Кошкареву [приложение рис.5] .

Задача 2

На рисунке изображена схема местности [приложение рис.6].

Передвигаться можно только в направлении стрелок. В каждом пункте можно бывать не более одного раза. Сколькими способами можно попасть из пункта 1 в пункт 9? Какой маршрут самый короткий и какой - самый длинный.

Решение :

Последовательно "расслаиваем" схему в дерево, начиная с вершины 1[приложение рис.7] . Получим дерево. Число возможных способов попадания из 1 в 9 равно числу "висячих" вершин дерева (их 14). Очевидно, кратчайший путь-1-5-9; самый длинный - 1-2-3-6-5-7-8-9.

2 "Группы, знакомства"

Задача 1

Участники музыкального фестиваля, познакомившись, обменялись конвертами с адресами. Докажите, что:

а) всего было передано четное число конвертов;

б) число участников, обменявшихся конвертами нечетное число раз, четно.

Решение: Пусть участники фестиваля А 1 , А 2 , А 3 . . . , А n – вершины графа, а ребра соединяют пары вершин, изображающих ребят, обменявшихся конвертами [Приложение рис.8]

Решение:

а) степень каждой вершины А i показывает число конвертов, которое передал участник А i своим знакомым. Общее число переданных конвертов N равно сумме степеней всех вершин графа N = степ. А 1 + степ. А 2 + + . . . + степ. А n -1 + степ. А n , N =2p , где p – число ребер графа, т.е. N – четное. Следовательно, было передано четное число конвертов;

б) в равенстве N = степ. А 1 + степ. А 2 + + . . . + степ. А n -1 + степ. А n сумма нечетных слагаемых должна быть четной, а это может быть только в том случае, если число нечетных слагаемых четно. А это означает, что число участников, обменявшихся конвертами нечетное число раз, четное.

Задача 2

Однажды Андрей, Борис, Володя, Даша и Галя договорились вечером пойти в кино. Выбор кинотеатра и сеанса они решили согласовать по телефону. Было также решено, что если с кем-то созвониться не удастся, то поход в кино отменяется. Вечером у кинотеатра собрались не все, и поэтому посещение кино сорвалось. На следующий день стали выяснять, кто кому звонил. Оказалось, что Андрей звонил Борису и Володе, Володя звонил Борису и Даше, Борис звонил Андрею и Даше, Даша звонила Андрею и Володе, а Галя звонила Андрею, Володе и Борису. Кто не сумел созвониться и поэтому не пришёл на встречу?

Решение:

Нарисуем пять точек и обозначим их буквами А, Б, В, Г, Д. Это первые буквы имён. Соединим те точки, которые соответствуют именам созвонившихся ребят.

[ приложение рис.9]

Из рисунка видно, что каждый из ребят – Андрей, Борис и Володя - созвонились со всеми остальными. Поэтому эти ребята и пришли к кинотеатру. А Галя и Даша не сумели созвониться между собой (точки Г и Д не соединены отрезком) и поэтому в соответствии с договорённостью в кино не пришли.

Применение графов в различных областях жизни людей

Кроме приведенных примеров, графы широко используются в строительстве, электротехнике, менеджменте, логистике, географии, машиностроении, социологии, программировании, автоматизации технологических процессов и производств, психологии, рекламе. Итак, из всего вышесказанного неопровержимо следует практическая ценность теории графов, доказательство которой и являлось целью данного исследования.

В любой области науки и техники встречаешься с графами. Графы - это замечательные математические объекты, с помощью которых можно решать математические, экономические и логические задачи, различные головоломки и упрощать условия задач по физике, химии, электронике, автоматике. Многие математические факты удобно формулировать на языке графов. Теория графов является частью многих наук. Теория графов - одна из самых красивых и наглядных математических теорий. В последнее время теория графов находит всё больше применений и в прикладных вопросах. Возникла даже компьютерная химия - сравнительно молодая область химии, основанная на применении теории графов.

Молекулярные графы , применяемые в стереохимии и структурной топологии, химии кластеров, полимеров и др., представляют собой неориентированные графы, отображающие строение молекул [приложение рис.10] . Вершины и ребра этих графов отвечают соответственным атомам и химическим связям между ними.

Молекулярные графы и деревья: [приложение рис.10] а, б - мультиграфы соотв. этилена и формальдегида; в-мол. изомеров пентана (деревья 4, 5 изоморфны дереву 2).

В стереохимии организмов наиболее. часто используют молекулярные деревья -основные деревья молекулярных графов, которые содержат только все вершины, соответствующие атомам С. Составление наборов мол. деревьев и установление их изоморфизма позволяют определять мол. структуры и находить полное число изомеров алканов, алкенов и алкинов

Белковые сети

Белковые сети - группы физически взаимодействующих белков, которые функционируют в клетке совместно и скоординированно, контролируя взаимосвязанные процессы, происходящие в организме [приложение рис. 11].

Граф иерархической системы называется деревом. Отличительной особенностью дерева является то, что между любыми двумя его вершинами существует единственный путь. Дерево не содержит циклов и петель.

Обычно у дерева, представляющего иерархическую систему, выделяется одна главная вершина, которая называется корнем дерева. Каждая вершина дерева (кроме корня) имеет только одного предка – обозначенный ею объект входит в один класс верхнего уровня. Любая вершина дерева может порождать несколько потомков – вершин, соответствующих классам нижнего уровня.

Для каждой пары вершин дерева существует единственный путь, их соединяющий. Этим свойством пользуются при нахождении всех предков, например, по мужской линии, любого человека, чья родословная представлена в виде генеалогического дерева, которое является «деревом» и в смысле теории графов.

Пример генеалогического дерева моей семьи [приложение рис.12].

Еще один пример. На рисунке показано библейское генеалогическое дерево [приложение рис.13].

Решение задач

1.Транспортная задача . Пусть в городе Краснодаре находится база с сырьём, которое нужно развести по городам Крымск, Темрюк, Славянск-на-Кубани и Тимашевск одним заездом, затратив при этом как можно меньше времени и топлива и вернувшись обратно в Краснодар.

Решение:

Для начала составим граф всех возможных путей проезда [приложение рис.14] , учитывая реальные дороги между данными населенными пунктами и расстояние между ними. Для решения этой задачи нам потребуется составить еще один граф, древовидный [приложение рис.15] .

Для удобства решения обозначаем города цифрами: Краснодар – 1, Крымск – 2, Темрюк – 3, Славянск – 4, Тимашевск – 5.

В результате вышло 24 решения, но нам нужны только кратчайшие пути. Из всех решений удовлетворяют только два, это 350 км.

Подобно этому можно и, я думаю, нужно рассчитывать реальные перевозки из одного населенного пункта в другие.

    Логическая задача на переливание. В ведре 8 л воды, и имеется две кастрюли емкостью 5 и 3 л. требуется отлить в пятилитровую кастрюлю 4 л воды и оставить в ведре 4 л, т. е. разлить воду поровну в ведро и большую кастрюлю.

Решение:

Ситуацию в каждый момент можно описать тремя числами [приложение рис.16].

В результате получаем два решения: одно в 7 ходов, другое в 8 ходов.

Заключение

Итак, для того чтобы научиться решать задачи, надо разобраться в том, что собой они представляют, как они устроены, из каких составных частей они состоят, каковы инструменты, с помощью которых производится решение задач.

Решая практические задачи с помощью теории графов стало ясно видно, что в каждом шаге, в каждом этапе их решения необходимо применить творчество.

С самого начала, на первом этапе, оно заключается в том, что нужно суметь проанализировать и закодировать условие задачи. Второй этап – схематическая запись, которая состоит в геометрическом представлении графов, и на этом этапе элемент творчества очень важен потому, что далеко не просто найти соответствия между элементами условия и соответствующими элементами графа.

Решая транспортную задачу или задачу на составление генеалогического дерева я сделал вывод, что безусловно метод графов интересен, красив и нагляден.

Я убедился, что графы достаточно широко применяются в экономике, управлении, технике. Также теория графов применяется в программировании.Об этом в данной работе не шла речь, но думаю, что это только вопрос времени.

В настоящей научной работе рассмотрены математические графы, области их применения, решено несколько задач с помощью графов. Знание основ теории графов необходимо в различных областях, связанных с управлением производством, бизнесом (например, сетевой график строительства, графики доставки почты). Кроме того, работая над научной работой, я освоил работу на компьютере в текстовом редакторе WORD . Таким образом, задачи научной работы выполнены.

Итак, из всего вышесказанного неопровержимо следует практическая ценность теории графов, доказательство которой и являлось целью данной работы.

Литература

    Берж К. Теория графов и ее применения. -M.: ИИЛ, 1962.

    Кемени Дж., Снелл Дж., Томпсон Дж. Введение в конечную математику. -M.: ИИЛ, 1963.

    Оре О. Графы и их применение. -M.: Мир, 1965.

    Харари Ф. Теория графов. -M.: Мир, 1973.

    Зыков А.А. Теория конечных графов. -Новосибирск: Наука, 1969.

    Березина Л.Ю. Графы и их применение. -M.: Просвещение, 1979. -144 c.

    "Соросовский образовательный журнал" №11 1996 (ст. "Плоские графы");

    Гарднер М. "Математические досуги", М. "Мир", 1972(глава 35);

    Олехник С. Н., Нестеренко Ю. В., Потапов М. К. "Старинные занимательные задачи", М. "Наука", 1988(часть 2, раздел 8; приложение 4);

Приложение

Приложение



П

Рис. 6

Рис. 7

Рис. 8

риложение

Приложение


Приложение

Приложение


П

Рис. 14

риложение

Приложение


Самое обсуждаемое
Камень Стрельца: как выбрать амулет по гороскопу для мужчины и женщины Камень Стрельца: как выбрать амулет по гороскопу для мужчины и женщины
Несколько пошаговых рецептов Несколько пошаговых рецептов
Епифаний кипрский житие. Епифаний Кипрский, свт. Епифаний Кипрский. Слово на Святое Воскресение Христово Епифаний кипрский житие. Епифаний Кипрский, свт. Епифаний Кипрский. Слово на Святое Воскресение Христово


top