Устройство для хранения электрической энергии и питание ею потребителей непостоянной мощности. Проблема хранения излишек электроэнергии решена Хранение электроэнергии в промышленных масштабах

Устройство для хранения электрической энергии и питание ею потребителей непостоянной мощности. Проблема хранения излишек электроэнергии решена Хранение электроэнергии в промышленных масштабах

Ученые давно пытаются найти способы хранить энергию, чтобы пользоваться ею в любое время, а не тогда, когда заблагорассудится природе. И, надо сказать, определенных успехов человечество в этом добилось. Придумано большое количество способов, заставляющих электроток «отложить» свое действие. Однако все они непригодны для постоянного надежного хранения, а главное – не столь мощны, как хотелось бы.

На высшем уровне

Наконец проблема стала столь велика, что ею занялись на высшем уровне. Вице-премьер Аркадий Дворкович поручил «РОСНАНО» и Минэнерго РФ разработать программу по развитию промышленных технологий хранения электроэнергии. Такие технологии смогут компенсировать дефицит электроэнергии в случае аварий, а также сохранять невостребованную выработку ветровых и солнечных электростанций.

Проблема в том, что более-менее приемлемых способов в мире пока не найдено. Однако господдержка, конечно, позволит активизировать поиски. Тем более что планируется компенсировать риски инвестиционных проектов в этой области, тем самым стимулируя спрос на внедрение новых накопителей. Использование накопителей позволит создавать экономически эффективные локальные энергосистемы, сгладить пики потребления и создавать рынки торговли электроэнергией для распределенной энергетики.

Сейчас работа электростанций подстраивается под потребителей, но во избежание резких пусков и возможных аварий необходим аккумулятор мощностью от 10‑20 МВт, способный полтора-два часа закрывать энергодефицит. Поиск его велся последние 20 лет, но пока необходимый аккумулятор так и не был найден, а те, что уже существуют, слишком дороги и имеют низкий КПД.

Сейчас мощность используемых аккумуляторов не превышает 1‑2 МВт. Так, итальянский энергоконцерн Enel осенью 2015 года запустил хранилище электроэнергии при солнечной станции на 10 МВт мощностью 2 МВт-ч.

Наибольший спрос в системах хранения, по прогнозам, будет в странах, активно повышающих долю возобновляемой энергетики в общей генерации (в некоторых странах ее планируется увеличить до 25‑30 %), а также в изолированных энергосистемах, таких, как у государств Азии и Африки. Еще один потенциальный потребитель – Дальний Восток, где возобновляемые источники необходимы в силу удаленности от больших электросетей и активно внедряются, но из‑за нестабильности выработки вынуждены действовать в комплексе с дизельными установками.

Кроме того, такие системы будут востребованы и на электротранспорте, где накопители призваны сгладить график потребления.
«Альтернативная энергетика уже завоевала свое место в мире, – говорит глава «РОСНАНО» Анатолий Чубайс. – Ее доля в общем объеме генерации возросла с 1 % до 10 %, и дальше только будет продолжать расти. По мнению экспертов, к 2050 году до 40 % энергобаланса будет составлять альтернативная энергетика. Я считаю, что в ближайшие 5‑15 лет хранение электроэнергии станет коммерчески состоявшейся технологией – и мы перейдем к другой электроэнергетике.

Прорывная технология, которая позволит разделить генерацию и потребление, – это накопление энергии. Такая технология изменит наши дома, потому что в этой ситуации потребитель станет независим от производителя электроэнергии. И это вопрос не 2050, не 2030 года – а гораздо более ранних сроков».

На стратегической сессии «Создание системы государственного стимулирования хранения электроэнергии в Российской Федерации», прошедшей в «Роснано», было отмечено, что глобальный рынок систем накопления электроэнергии находится в шаге от скачкообразного роста – за 10 лет его объем может вырасти в 100 раз. Уже сейчас очевидна тенденция к снижению стоимости производства систем хранения и совершенствование технических решений до уровня, который будет востребован промышленностью на рубеже 2020 года.

Задачи сохранения

В целом, проблема эффективного аккумулирования энергии, вырабатываемой в том числе из возобновляемых источников энергии, сейчас является одним из наиболее сложных вопросов энергетики. Конечно, внедрение аккумуляторов сделает энергоснабжение более надежным, позволит резервировать его.

С помощью аккумулирующих устройств решаются следующие задачи:

выравнивание пульсирующей мощности, которую вырабатывает генерирующая установка в условиях, например, постоянно меняющейся скорости ветра;
согласование графиков производства и потребления энергии с целью питания потребителей в периоды, когда агрегат не работает или его мощности недостаточно;
увеличение суммарной выработки энергии генерирующей установкой.

Для реализации этих задач сейчас применяют, как правило, так называемые емкостные аккумулирующие устройства, в которых запас энергии рассчитан на 2‑3‑суточное потребление. Они необходимы для использования в периоды достаточно длительных спадов генерации энергии.

При решении вопросов, связанных с аккумулированием энергии, должны приниматься во внимание многие характеристики аккумуляторов:

относительная масса;
удельные затраты;
длительность хранения энергии;
сложность энергетических преобразований;
безопасность эксплуатации и т. п.

Требуемая емкость аккумулятора зависит от типа и характеристик агрегата, условий и схемы использования генерирующей установки, мощности нагрузки и схемы потребителя. Она определяется также исходя из технико-экономических показателей, т. к. аккумулирование не должно приводить к большому увеличению затрат на энергоснабжение объекта.

Гидроаккумулирующие станции

Как сейчас решается проблема сохранения энергии? На самом деле человечество изобрело достаточно много видов аккумуляторов – от уже ставших привычными до совсем экзотических.

Самые известные – механические. Например, гидроаккумулирующие электростанции (ГАЭС).

Гидроэнергия является, по существу, одной из разновидностей механической энергии, но отличается тем, что ее можно аккумулировать в очень больших количествах и использовать при такой мощности и в таких промежутках времени, которые позволяют выравнивать переменную нагрузку энергосистем и обеспечить более равномерный режим работы тепловых электростанций.

Гидроаккумулирующая электростанция включает в себя два водохранилища (верхнее и нижнее), разность уровней которых обычно составляет от 50 до 500 метров. В машинном зале имеются обратимые агрегаты, которые могут работать как в качестве двигателей-насосов, так и турбин-генераторов. При высоком напоре (500 метров и больше) используются отдельные насосные и турбинные агрегаты. Во время, когда нагрузка энергосистемы минимальна (например, ночью) эти агрегаты заполняют водой верхнее водохранилище, а во время пиковой нагрузки системы преобразуют накопленную гидроэнергию в электрическую. КПД такого аккумулирования равен 70‑85 %, себестоимость получаемой таким способом электроэнергии намного выше, чем на тепловых электростанциях, но выравнивание графика нагрузки и возможность уменьшения номинальной мощности тепловых электростанций снижают эксплуатационные расходы энергосистем и вполне оправдывают сооружение ГАЭС. В настоящее время в мире их существует более трехсот.

Когда снижается потребность в электроэнергии, ее избыток используется на ГАЭС для перекачки воды из нижнего резервуара в верхний. Таким образом «лишняя» электрическая энергия превращается в механическую (потенциальную) энергию. Во время повышенного спроса на электроэнергию производится перепуск воды из верхнего резервуара в нижний. При этом вода протекает через гидротурбогенератор, в котором ее потенциальная энергия превращается в электрическую.

Маховики

Второй тип механического аккумулятора предназначается для транспортных устройств. Принцип его работы удивительно прост. Аккумулятор этого типа – маховик, обладающий большой массой и раскручиваемый до очень высокого числа оборотов.

Запасаемая им энергия – не что иное, как кинетическая энергия самого маховика. Для повышения кинетической энергии маховика нужно увеличивать его массу и число оборотов вращения. Но с ростом числа оборотов увеличивается центробежная сила, что может привести к разрыву маховика. Поэтому для маховиков используются самые прочные материалы. Например, сталь и стеклопластик. Уже изготовлены маховики, масса которых измеряется многими десятками килограммов, а частота вращения достигает 200 тысяч оборотов в минуту.

Потери энергии при вращении маховика вызываются трением между поверхностью маховика и воздухом и трением в подшипниках. Для уменьшения потерь маховик помещают в кожух, из которого откачивается воздух, т. е. внутри кожуха создается вакуум. Применяются самые совершенные конструкции подшипников. В этих условиях годовая потеря энергии маховиком может быть менее 20 %.

В настоящее время созданы опытные образцы городских автобусов с аккумулятором энергии этого типа. Но перспектива использования маховиков-аккумуляторов пока неясна.

Гирорезонансные накопители энергии представляют собой тот же маховик, но выполненный из эластичного материала (например, резины). Энергия здесь запасается в резонансной волне упругой деформации материала маховика. Такими конструкциями в конце 1970‑х в Донецке занимался Н. З. Гармаш. По его оценкам, при рабочей скорости маховика, составляющей 7‑8 тысяч оборотов в минуту, запасенной энергии было достаточно для того, чтобы автомобиль мог проехать 1500 километров против 30 километров с обычным маховиком тех же размеров.

Электрохимический аккумулятор

Издавна используется такой класс аккумуляторов энергии, как электрохимические аккумуляторы.

Электрохимический аккумулятор заряжается (накапливает энергию) путем питания его электрической энергией. В аккумуляторе она преобразуется в энергию химическую. Выдает же электрохимический аккумулятор накопленную энергию снова в виде электрической энергии.

Аккумулятор этого типа имеет два электрода – положительный и отрицательный, погруженные в раствор – электролит. Преобразование химической энергии в электрическую происходит посредством химической реакции. Чтобы дать начало реакции, достаточно замкнуть внешнюю часть электрической цепи аккумулятора. На отрицательном электроде, содержащем восстановитель, в результате химической реакции происходит процесс окисления. Образующиеся при этом свободные электроны переходят по внешнему участку электрической цепи от отрицательного электрода к положительному. Иными словами, между электродами возникает разность потенциалов, создающая электрический ток.

При зарядке аккумулятора химическая реакция протекает в обратном направлении.

Электрохимические аккумуляторы получили очень широкое распространение главным образом при запуске двигателей внутреннего сгорания.
В настоящее время больше всего используются сравнительно дешевые свинцово-кислотные аккумуляторы. Однако последнее время на гибридных автомобилях и электромобилях начали применяться мощные литий-ионные аккумуляторы. Помимо меньшего веса и большей удельной емкости, они позволяют практически полностью использовать свою номинальную емкость, считаются более надежными и имеющими больший срок службы.

Главным недостатком всех существующих электрохимических аккумуляторов является низкое значение удельной энергии, запасаемой аккумулятором.

Хранение с помощью… вагона

Суть гравитационных механических накопителей состоит в том, что некий груз поднимается на высоту и в нужное время отпускается, заставляя по ходу вращаться ось генератора. Идея проста: в то время, когда солнечные батареи и ветряки производят достаточно много энергии, специальные тяжелые вагоны при помощи электромоторов загоняются на гору. Ночью и вечером, когда источников энергии недостаточно для обеспечения потребителей, вагоны спускаются вниз, и моторы, работающие как генераторы, возвращают накопленную энергию обратно в сеть.

Примером реализации такого способа накопления энергии может служить устройство, предложенное калифорнийской компанией Advanced Rail Energy Storage (ARES).

Практически все механические накопители имеют простую конструкцию, а следовательно, высокую надежность и большой срок службы. Время хранения однажды запасенной энергии практически не ограничено, если только груз и элементы конструкции с течением времени не рассыплются от старости или коррозии.

Энергию, запасенную при поднятии твердых тел, можно высвободить за очень короткое время. Ограничение на получаемую с таких устройств мощность накладывает только ускорение свободного падения, определяющее максимальный темп нарастания скорости падающего груза.
К сожалению, удельная энергоемкость таких устройств невелика. Чтобы запасти энергию для нагрева 1 литра воды, надо поднять тонну груза как минимум на высоту 35 метров.

Гидравлика и гравитация

Существуют гидравлические накопители гравитационной энергии. Вначале перекачиваем 10 тонн воды из подземного резервуара (колодца) в емкость на вышке. Затем вода из емкости под действием силы тяжести перетекает обратно в резервуар, вращая турбину с электрогенератором. Срок службы такого накопителя может составлять 20 и более лет.

К сожалению, гидравлические системы трудно поддерживать в должном техническом состоянии – прежде всего, это касается герметичности резервуаров и трубопроводов и исправности запорного и перекачивающего оборудования. И еще одно важное условие – в моменты накопления и использования энергии рабочее тело (по крайней мере, его достаточно большая часть) должно находиться в жидком агрегатном состоянии, а не пребывать в виде льда или пара. Зато иногда в подобных накопителях возможно получение дополнительной даровой энергии, – скажем, при пополнении верхнего резервуара талыми или дождевыми водами.

Электролизер

Здесь на этапе накопления энергии происходит химическая реакция, в результате которой восстанавливается топливо, например из воды выделяется водород – прямым электролизом, в электрохимических ячейках с использованием катализатора или с помощью термического разложения, скажем, электрической дугой или сильно сконцентрированным солнечным светом. «Освободившийся» окислитель может быть собран отдельно или за ненадобностью «выброшен».

На этапе извлечения энергии наработанное топливо окисляется с выделением энергии. Например, водород может дать сразу тепло, механическую энергию (при подаче его в двигатель внутреннего сгорания или турбину) либо электричество (при окислении в топливной ячейке).

Этот способ очень привлекателен независимостью этапов накопления энергии («зарядки») и ее использования («разрядки»), высокой удельной емкостью запасаемой в топливе энергии (десятки мегаджоулей на килограмм топлива) и возможностью длительного хранения. Однако его широкому распространению препятствует неполная отработанность и дороговизна технологии, высокая пожаро- и взрывоопасность. Несмотря на эти недостатки, в мире разрабатываются различные установки, использующие водород в качестве резервного источника энергии.

Конденсаторы

Самые массовые «электрические» накопители энергии – это обычные радиотехнические конденсаторы. Они обладают огромной скоростью накопления и отдачи энергии и способны так работать в широком диапазоне температур многие годы. Объединяя несколько конденсаторов параллельно, легко можно увеличить их суммарную емкость до нужной величины. Однако у конденсаторов есть два основных недостатка. Во-первых, это весьма малая удельная плотность запасаемой энергии и потому небольшая (относительно других видов накопителей) емкость. Во-вторых, это малое время хранения, которое редко превышает несколько часов, а часто составляет лишь малые доли секунды. В результате область применения конденсаторов ограничивается различными электронными схемами.

Ионисторы, которые иногда называют «суперконденсаторами», можно рассматривать как своего рода промежуточное звено между электролитическими конденсаторами и электрохимическими аккумуляторами. От первых они унаследовали практически неограниченное количество циклов заряда-разряда, а от вторых – относительно невысокие токи зарядки и разрядки. Емкость их также находится в диапазоне между наиболее емкими конденсаторами и небольшими аккумуляторами.

Другие типы накопителей

В пружинных механических накопителях большой расход и поступление энергии обеспечивается за счет сжатия и распрямления пружины. Срок хранения накопленной энергии в сжатой пружине может составлять многие годы. Однако следует учитывать, что под действием постоянной деформации любой материал с течением времени накапливает усталость. Поэтому спустя время сжатая пружина может оказаться «разряженной» полностью или частично.

К газовым механическим накопителям относится ресивер воздушный. В этом классе устройств энергия накапливается за счет упругости сжатого газа. При избытке энергии компрессор закачивает газ в баллон. Когда требуется использовать запасенную энергию, сжатый газ подается в турбину, непосредственно выполняющую необходимую механическую работу или вращающую электрогенератор.

Газ, сжатый до давления в десятки и сотни атмосфер, может обеспечить высокую удельную плотность запасенной энергии в течение практически неограниченного времени. Однако входящие в состав установки компрессор с турбиной или поршневой двигатель, – устройства достаточно сложные, имеющие ограниченный ресурс.

Известны также накопители, использующие химическую энергию. Химическая энергия – это энергия, «запасенная» в атомах веществ, которая высвобождается или поглощается при химических реакциях между веществами. Она либо выделяется в виде тепловой при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую в гальванических элементах и аккумуляторах. Эти источники энергии характеризуются высоким КПД (до 98 %), но низкой емкостью. Химические накопители энергии позволяют получать энергию как в том виде, из которого она запасалась, так и в любом другом. Но здесь не обойтись без специальных технологий и высокотехнологичного оборудования.

Помимо описанных выше, есть и другие типы накопителей энергии. Однако большинство из них весьма ограничено по плотности запасаемой энергии, по времени ее хранения, и имеют высокую удельную стоимость. Поэтому их эксплуатация всерьез не рассматривается.

Долгое время не было способа получить электрический заряд большой силы искусственно.
В 1650 году Отто фон Герике, известный также как изобретатель насоса, придумал машину, которая могла давать искры длиной несколько сантиметров. Он облил стеклянный шар изнутри расплавленной серой и, когда она затвердела, разбил стекло. После этого он укрепил серный шар на подставке так, чтобы его можно было вращать рукояткой. Теперь, вращая шар и прикладывая к нему кусок кожи, можно было добиться появления искры.
Это изобретение было важным шагом вперед, но не решало проблему запасания электричества. Переворот произошел с изобретением знаменитой Лейденской банки. Эта банка и бутылки для хранения электричества были использованы для разных целей. Для изоляции запасенного электричества использовали сосуды из стекла. Если сквозь пробку сосуда удавалось просунуть гвоздь и вращать его, через некоторое время можно было достичь определенных

результатов. После вращения гвоздя достаточно было держать в одной руке бутылку, а другой коснуться гвоздя, как человек испытывал удар тока.
Некоторые использовали емкости побольше и приходили в себя только через несколько дней. Удар тока доставлял людям новые ощущения. Весть о новых чудесах очень быстро разнеслась по Европе. Банку стали использовать и для того, чтобы неожиданно «ударить» знакомого.
Прошло еще некоторое время, и люди поняли, что можно запасти гораздо больший заряд, если банку выложить изнутри и снаружи материалом, который хорошо проводит ток, например, металлической фольгой. Еще поз-

же было обнаружено, что если гвоздь и внутренняя стенка соединены хорошим проводником, то банка будет заряжаться. Прикосновение вызывало разрядку банки. Соединение нескольких банок давало еще лучшие результаты. Франклин использовал батарею из двух банок для того, чтобы убивать индюшек и другую птицу.

Еще по теме КАК СОХРАНИТЬ ЭЛЕКТРИЧЕСТВО?:

  1. 2. Проверка соблюдения условий, обеспечивающих сохранность материалов. Инвентаризация
  2. 2. Проверка кассы и соблюдения условий, обеспечивающих сохранность денежных средств. Инвентаризация кассы
  3. § 10. Расторжение трудового договора в случае принятия необоснованного решения руководителем организации (филиала, представительства), его заместителями и главным бухгалтером, повлекшего за собой нарушение сохранности имущества, неправомерное его использование или иной ущерб имуществу организации (п. 9 части первой ст. 81 ТК РФ)
  1. Гасите свет, переходя из комнаты в комнату. Установите тепловые датчики движения, которые будут выключать свет за вас.
  2. Используйте местное освещение: подсветки, торшеры, бра. Например, чтобы каждый раз не включать основные источники света, в комнате лучше установить подсветку из светодиодной ленты.
  3. Помните, что чистота - залог экономии. Грязные окна и пыльные плафоны снижают уровень освещённости в помещении до 35%.
  4. При ремонте учитывайте, что светлые стены и будут отражать до 80% светового потока, а тёмные - лишь около 12%.
  5. Замените лампочки накаливания на энергосберегающие и светодиодные. Замена только одной лампы позволит экономить около 1 000 рублей в год.

Возьмём, к примеру, Москву. 1 кВт·ч в столице стоит Тарифы на электрическую энергию для населения и приравненных к нему категорий потребителей на территории г. Москвы, за исключением Троицкого и Новомосковского административных округов 5,38 рубля. Представим, что в трёх квартирах по восемь часов в сутки горят три лампочки: светодиодная, энергосберегающая и накаливания. Для более объективной картины выберем лампы такой мощности, чтобы они давали примерно одинаковый уровень освещённости. И вот что мы получим.

Вид лампы Светодиодная Энергосберегающая Накаливания
Потребляемая мощность, кВт 0,013 0,025 0,1
Ресурс лампы, часы 50 000 8 000 1 000
Стоимость лампы, руб. 248 200 11
Стоимость часа эксплуатации Стоимость часа эксплуатации = тариф × мощность + стоимость лампы ⁄ ресурс , руб. 0,0749 0,1595 0,549
Часовая экономия Часовая экономия = стоимость эксплуатации лампы накаливания − стоимость эксплуатации сравниваемой лампы , руб. 0,4741 0,3895 -
Срок окупаемости Срок окупаемости в часах = (стоимость лампы − стоимость лампы накаливания) ⁄ часовая экономия , часы 499,89 485,24 -
Срок окупаемости Срок окупаемости в днях = срок окупаемости в часах ⁄ 8 , дни 62,49 60,65 -
Годовая экономия Годовая экономия = (8 × 365 − срок окупаемости в часах) × часовая экономия , руб. 1147,37 948,34 -

Получается, что через два месяца одна энергосберегающая лампа позволит вам ежечасно экономить 40 копеек, а 10 лампочек - 4 рубля.

Правильно пользуйтесь электроприборами

  1. При отсутствии двухтарифного отключайте все неосновные электрические приборы на ночь, а зарядные устройства - после полной подпитки техники.
  2. Холодильник необходимо регулярно размораживать, если в нём нет специальной системы No Frost. Проследите, чтобы устройство стояло как можно дальше от отопительных приборов и обеспечивалась естественная вентиляция задней стенки. Ставьте в него только остывшую посуду!
  3. Отслеживайте работоспособность конфорок электрической плиты и ставьте на них только подходящую по размеру посуду с ровным дном.
  4. Накрывайте кастрюли и сковородки крышками: они уменьшают потерю тепла почти в три раза.
  5. Старайтесь не перегружать стиральную машину (чрезмерная загрузка увеличивает расход электричества до 10%) и использовать средний температурный режим. На стирку при 30 градусах тратится на 35% меньше энергии, чем на стирку при 40 градусах.
  6. Используйте электрический чайник вместо электроплиты для разогрева воды. Так будет гораздо экономичнее. Кипятите только тот объём жидкости, который нужен в данный момент.
  7. Регулярно проводите чистку вентиляторов и фильтров кондиционера.
  8. Вещи, требующие низкого температурного режима, после выключения утюга.
  9. Не оставляйте технику, в том числе микроволновки, телевизоры, компьютеры, сканеры, принтеры, модемы, в режиме ожидания. Это позволит сэкономить более 200 кВт в год.
  10. Используйте электрические розетки с таймером.

Покупайте энергосберегающую бытовую технику

  1. Все электрические приборы маркируются латинскими буквами от A+++ до G. Выбирайте технику с низким классом энергопотребления, маркированную A и B.
  2. Покупайте приборы, в которых используются новейшие технологии экономии электроэнергии. Например, всё более популярными становятся индукционные варочные панели, нагревающие только дно посуды и не растрачивающие энергию впустую. КПД таких плит доходит до 95%!

Установите двухтарифный счётчик

  1. Двухтарифный счётчик позволяет экономить по ночам. Такие счётчики выгодны тем, кто может использовать энергоёмкие бытовые приборы: посудомоечную и стиральную машины, хлебопечку - с 23.00 до 7.00. В среднем счётчик окупает себя за год.

Не тратьте тепло зря

  1. Вместо традиционного обогревателя используйте кондиционер, настроенный на режим обогрева. Если это позволяет производитель, конечно. Многие кондиционеры нельзя использовать при отрицательных температурах.
  2. Инфракрасный обогреватель экономичнее остальных на 30–80%.
  3. Если в доме установлены электрические батареи, старайтесь содержать их в чистоте, чтобы пыль не поглощала часть тепла, а вам не приходилось увеличивать температурный режим.
  4. Используя водонагреватель, уменьшите температуру нагрева воды.
  5. Замените накопительный водонагреватель на проточный. Так вы не будете тратить электроэнергию на постоянное поддержание определённой температуры воды.
  6. Нагревайте воду только при необходимости. Отключайте бойлер от электросети, когда уходите из дома и по ночам.
  7. Раз в три месяца чистите водонагреватель от , которая увеличивает расход электроэнергии на 15–20%.
    • Отключите аппарат от сети и перекройте подачу воды.
    • Полностью слейте воду.
    • Снимите крышку бойлера, осторожно отсоедините провода и выкрутите термореле.
    • Раскрутите гайки, удерживающие фланец. Подтолкните фланец вверх, проверните и вытащите наружу.
    • Теперь можно очистить нагревательный элемент металлической щёткой. Избавиться от налёта поможет и раствор уксусной кислоты и горячей воды (1: 5). Просто поместите в него ТЭН на 30 минут и следите за тем, чтобы уплотнительная резина не соприкасалась с кислотой.

Реформирование электроэнергетики в России привело к образованию такого специфического товара как электроэнергия. Электроэнергия не обладает таким основным свойством присущим остальным товарам, как накопление и возможность удовлетворения растущего спроса запасами. Разделение рынка на оптовый и розничный привело к необходимости создания конкурентной среды между производителями на оптовом рынке. В процессе реформирования электроэнергетики рынок постепенно проходит этапы перехода от регулируемого к дерегулируемому, основанному на естественной конкуренции между производителями электроэнергии.

2)Специфика электроэнергии как товара.

Наиболее важными особенностями экономики энергосистем, вызванными спецификой электроэнергии как товара и которые необходимо учитывать при организации рынка электроэнергии, является следующее: 1) производство, доставка (передача и распределение) и потребление электроэнергии в силу ее физической природы происходят практически одно­временно и ее невозможно складировать (накапливать) в значи­тельных объемах. Другими словами, произведенная продукция не может накап­ливаться на складах производителя, потребителя или в пути, а практически мгновенно доставляется до потребителя и потребляется им; 2) электроэнергия является в высшей степени стандартизированным про­дуктом, поставляемым множеством производителей в «общий котел» (т.е. в общие электрические сети) и мгновенно потребляемым оттуда же множеством потребителей. Поэтому с физической точки зрения невозможно определить, кто произвел электроэнергию, потребляемую тем или иным потребителем - можно лишь контролировать объемы поставки в общую сеть от каждого производите­ля и объемы потребления из нее каждым потребителем; 3) электроэнергия, получаемая потребителем из энергосистемы, является товаром первой необходимости, только в редких случаях имеющим другие то­вары-заменители (например, переход на электроснабжение от автономной ди­зельной электростанции, перевод электроотопления на газовое отопление и не­которые другие случаи). По этой причине потребители обычно крайне чувстви­тельны к перерывам в электроснабжении, а энергосистема должна обладать не­обходимым запасом надежности. Попутно отметим, что возможные принудительные отключения части потребителей в условиях дефицита электроэнергии или аварии, ведут к сниже­нию потребления, но не спроса. Иными словами, спрос на рынке электроэнер­гии не всегда равен потреблению; 4) производители выра­батывают и поставляют в общую сеть электрическую мощность точно в соот­ветствии со своими обязательствами (или заданием диспетчера), а все потреби­тели суммарно потребляют электрическую мощность точно в соответствии со своими обязательствами (или прогнозом диспет­чера). Но на практике в силу самого разного рода обстоятельств, как произво­дители, так и потребители допускают отклонения от своих обязательств. Это влечет за собой дисбаланс между поставкой и потреблением. На любом другом рынке кратковременный дисбаланс между производст­вом и потреблением товара не приводит к потере устойчивости рынка, он легко ликвидируется за счет складского запаса или товаров-заменителей. Специфика электроэнергии как товара приводит к развитию рынка электроэнергии отличного от обычных товарных рынков.


С ейчас мы уже не можем представить свою жизнь без электричества и отопления. Вся наша повседневная жизнь связана с использованием множества электроприборов, которые обеспечивают нам необходимый уровень комфорта. Сегодня мы поговорим о том, как можно экономить электричество дома.

На диаграмме слева показана структура расхода электроэнергии для семьи из 3 человек.

С каждым годом затраты на электричество и отопление увеличиваются за счет повышения тарифов и роста количества используемых электроприборов. Так как запасы энергоресурсов очень ограничены, стоимость электроэнергии повышается ежегодно примерно на 15% и, соответственно, увеличиваются и наши платежи за электричество.

Поэтому все больше и больше людей начинают задумываться о том как экономить электричество дома.

Кроме того, экономия электричества позволит сократить потребление природных ресурсов и снизить выбросы вредных веществ в атмосферу, а значит внести посильный вклад в сохранение наших рек, озер и лесов.
Сэкономив 100 Вт электроэнергии, мы можем сохранить 48 кг каменного угля, или 33 л нефти, или 35 м3 природного газа.

В среднем семья из трех человек, проживающих в квартире 50 м2, платит за энергоресурсы около 59% от общей суммы коммунальных платежей, из них: 32% составляют отопление и горячее водоснабжение, 15% - электроэнергия, 12% - газ.

Данные советы актуальны для тех, кто имеет тепловые счетчики или электрообогреватели.

1.Утеплите дверные и оконные проемы специальным утеплителем.
Ведь основные утечки тепла происходят через окна и двери.


2. Вставьте новые энергосберегающие окна, лучше всего - с двойным стеклопакетом.
Если у вас есть балкон или лоджия, то застеклите их тоже. Это самый эффективный способ сберечь тепло в доме.


3. Необходимо правильно проветривать помещение.


Проветривайте при выключенном отоплении!
Полное проветривание в течении 2 минут каждые 3-4 часа сохраняет намного больше тепла, чем постоянное частичное проветривание. Зимой достаточно 2-3 минут полного проветривания. Весной и осенью - до 15 минут.

4. Не закрывайте батареи шторами и декоративными плитами и панелями.

1. Проверьте целостность проводки в доме.


Это предотвратит утечку электричества (потери могут составить до 30 %) и уменьшит опасность поломки бытовой техники и короткого замыкания.

2. Выключайте электроприборы, находящиеся в режиме «standby» (режима ожидания включения) - телевизор, музыкальный центр, DVD-проигрыватель.


Большинство приборов активно работают несколько часов в сутки, а остальное время находятся в режиме ожидания, при этом бесполезно расходуется значительное количество энергии.

3. Организуйте правильное освещение.


а. Максимально используйте естественное освещение (используйте светлые занавески, светлые тона отделки стен и потолков, чаще мойте окна, не захламляйте подоконники.) это позволит сделать помещение светлее.
б. Используйте принцип зонального освещения - необходимо рационально использовать общее освещение и местное. Общее освещение предназначено для общего освещения комнаты (люстра). Местное освещение (лампы,бра) позволяют осветить темные углы помещения.

Сочетание местного и общего освещения (комбинированное освещение) позволяет использовать свет более рационально - осветить только тот участок комнаты, который нам нужен. В результате устройства комбинированного освещения на комнату 18-20 м2 экономится до 200 кВт/ч.

4. Замените традиционные лампы накаливания на энергосберегающие.


Они потребляют в несколько раз меньше электроэнергии,а служат в несколько раз дольше.

5. Выключайте осветительные и другие электроприборы, в которых не нуждаетесь в данный момент.


Уходя, гасите свет.

6. Чаще мойте лампы и плафоны.

Как экономить электроэнергию на кухне и при приготовлении пищи

Электрическая плита - самый энергоемкий бытовой прибор, на ее долю приходится, больше половины всей потребляемой электроэнергии. Соблюдая простые правила и приемы при приготовлении пищи, можно сэкономить значительное количество электроэнергии.

1. При варке в кастрюле нужно включать конфорку на полную мощность только до закипания воды. Как только вода закипела, сразу же переключайте нагрев конфорки на минимальное положение, при этом расход электроэнергии резко снизится, а время приготовления не увеличится.

2.Обязательно плотно закрывайте кастрюлю крышкой. При варке в открытой посуде расход электроэнергии увеличивается в 2,5 раза. Даже если крышка немного приоткрыта, это равнозначно тому, что крышки нет совсем, т.к. тепло теряется с уходящим паром.

3. Используйте посуду с диаметром дна, соответствующим размеру конфорки. Диаметры днищ кастрюль должны быть больше или равны диаметрам конфорок электроплит, на которые их ставят.

4.Не допускайте бурного кипения воды на включенной на полную мощность конфорке, ведь для кипения на разогретой плите достаточно и гораздо меньшей мощности.

5.Если вы выключите конфорку электроплиты немного раньше до окончания приготовления блюда, то сэкономите электроэнергию за счёт остаточного тепла.

6. При варке овощей используйте минимальное количество воды в кастрюлях.

7. Выбирайте кастрюли по размеру,соответствующем необходимому объему пищи. Если требуется приготовить небольшой объем пищи, то лучше это сделать в маленькой. кастрюльке на самой маленькой конфорке.

8. Донышки у кастрюль и сковородок должны быть ровные и чистые, для того чтобы был плотный контакт с конфорками. Посуда с кривым дном или с нагаром требует электроэнергии на 60 % больше.

9. При покупке посуды выбирайте сковородки и кастрюльки с толстым дном и стекляными крышками.

10. Используйте скороварки. Они очень экономят электроэнергию и время. Время приготовления пищи в них сокращается в три раза, а расход электроэнергии в два раза. Это достигается благодаря герметичности скороварок и особого режима приготовления - температура внутри посуды достигает 120 градусов за счет избыточного давлении пара.

11.Посуда из нержавеющей стали с толстым полированным дном обеспечивает хороший контакт с плитой и позволяет экономить энергию. Посуда из алюминия, эмалированная, с тефлоновым покрытием не экономичны.

12. Состояние конфорок электроплиты имеет большое значение. Если в конфорке сгорели одна или две спирали или конфорка вспучилась от перегрева, потребление электроэнергии возрастает до 50 %. Ее нужно срочно менять.

13. Применяйте специальные электронагревательные приборы (сковородки, кастрюли, грили, кофеварки. и др.), в которых блюда получаются более вкусными и качественными, а электроэнергии тратится намного меньше. Используйте электрочайник, который сам по себе экономит электроэнергию, автоматически выключаясь при закипании в нем воды. Кипятите воды ровно столько, сколько требуется на один раз.

14.Существенно сократить расход на электроэнергию может своевременное удаление накипи внутри электрочайников.

15. Используйте термосы или поттеры для поддержания воды и пищи в нагретом состоянии в течение длительного времени.

16. Не используйте включенные конфорки электроплиты для обогрева помещения, это неэкономно, малоэффективно и опасно.

17. Для разогрева и приготовления пищи используйте микроволновые печи, они сэкономят вам время и энергию.

Что мы обычно делаем неэкономно:
■ выбираем неподходящую посуду - потери электроэнергии 10% -15%
■ Не закрываем плотно посуду при приготовлении пищи. - потери 2%- 6%
■ Используем слишком большой объем воды - потери 5%- 9%
■ Используем посуду не по размерам конфорки - потери 5% -10%
■ Не используем остаточное тепло - потери 10% -15%

А для закрепления материала - замечательная инфографика от Объединенной энергетической компании. Картинка кликабельна.


Используя эти простые советы вы сможете значительно сократить расходы на электроэнергию и сэкономить деньги.

Повторим основные правила:










Чтобы экономить электроэнергию в квартире, необходимо научиться использовать ее рационально. При этом кроме существенной экономии денег при оплате энергии, вы вносите очень важный вклад в решение глобальных экологических проблем.

В статье использованы материалы Информационно-консультационного центра по энергосбережению (ИКЦЭ).


Самое обсуждаемое
Быстрые рецепты на каждый день Быстрые рецепты на каждый день
Кулинарные рецепты Кулинарные рецепты
Нормативное построение словосочетаний и предложений На бездонном ослепительно синем небе Нормативное построение словосочетаний и предложений На бездонном ослепительно синем небе


top